
WEEK 2 SECTION: LOGISTIC REGRESSION
ALEX MEI | SPRING 2023 | NATURAL LANGUAGE PROCESSING

OFFICE HOURS: MONDAY 4 – 5 PM OUTSIDE HENLEY 2113 
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About Me

Research: 
* Responsible Machine Learning: AI Transparency and Safety
* Natural Language Generation: Visual Augmentation

Industry:
* Internships: Procore, Amazon, Benchling, Two Sigma
* Interests: Machine Learning Research, Deep Learning

Etcetera: 
* UCSB CS BSMS (2022, 2023), ERSP (2020)
* Hobbies: Cooking, Pokemon TCG, Reality Competitions
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https://sites.cs.ucsb.edu/~alexmei/cs190i.html
• cs165b.html

https://piazza.com/class/lfxgp66zcut509

http://william.cs.ucsb.edu/courses/index.php/Spring_2023_

CS190I_Introduction_to_Natural_Language_Processing

Resources
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Tree Mail

* HW1 Due Tuesday April 25th at 1 PM

* Monday April 17th OH rescheduled to 1 - 2 PM

* Don’t miss a legendary alumni talk by the 🐐 Tony Sun

* Monday April 17th 3 - 5 PM in Henley 1010 Lecture Hall

* Talks on (1) college insights and (2) machine learning operations

* Lead author of “Mitigating Gender Bias in NLP” with over 360+ citations

* Ranked 1st in class UCSB ’21 à Stanford M.S. in Computer Science + Google SWE   
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Setting: The Restaurant Scoring Problem

* Input: features (food taste, service quality, etc.) – 𝑥 ∈ 𝑅! ≡ 𝑋

* Output: restaurant rating score – 𝑦 ∈ 𝑅" ≡ 𝑌

* Given: customers reviews – 𝐷 ∶ { 𝑥", 𝑦" , … , 𝑥# , 𝑦# }

* Goal: learn relationship that models output for given input – 𝑓 ∶ 𝑋 → 𝑌
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A Simple Linear Model

* Approximate restaurant rating score 𝑦$ as ∑$%"! 𝑤$𝑥$ + 𝑏

> Q: what does a larger versus smaller weight 𝑤$ indicate about feature 𝑥$?
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A Simple Linear Model

* Approximate restaurant rating score 𝑦$ as ∑$%"! 𝑤$𝑥$ + 𝑏

> Q: what does a larger versus smaller weight 𝑤$ indicate about feature 𝑥$?

* Goal: learn optimal weights 𝑤∗ that best aligns restaurant score w.r.t. features 

* Rewrite using homogeneous coordinates:  ∑$%'! 𝑤$𝑥$ = 𝑤(𝑥

* Notice the formulation 𝑦 ~ 𝑤(𝑥 is a linear regression model

> Q: how does the rewritten version integrate the bias term into vector notation?
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A Simple Linear Model

* Approximate restaurant rating score 𝑦$ as ∑$%"! 𝑤$𝑥$ + 𝑏

> Q: what does a larger versus smaller weight 𝑤$ indicate about feature 𝑥$?

* Goal: learn optimal weights 𝑤∗ that best aligns restaurant score w.r.t. features 

* Rewrite using homogeneous coordinates:  ∑$%'! 𝑤$𝑥$ = 𝑤(𝑥

* Notice the formulation 𝑦 ~ 𝑤(𝑥 is a linear regression model

> Q: how does the rewritten version integrate the bias term into vector notation?

> Q: what if we want a probabilistic interpretation instead?
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The Sigmoid Function 

* Denote sigmoid as 𝜃 𝑠 = )!

"*)!
∈ (0, 1)

* Built-in probabilistic interpretation

* Property I: 𝜃 𝑠 = )!

"*)!
= "

"*)"!
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The Sigmoid Function 

* Denote sigmoid as 𝜃 𝑠 = )!

"*)!
∈ (0, 1)

* Built-in probabilistic interpretation

* Property I: 𝜃 𝑠 = )!

"*)!
= "

"*)"!

* Property II: 𝜃 −𝑠 = 1 − 𝜃 𝑠
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Logistic Classifier Formulation

* Input: features – 𝑥 ∈ 𝑅! ≡ 𝑋

* Output: binary label (good or bad restaurant) – 𝑦 ∈ −1, 1 ≡ 𝑌

* Logistic Regression Model: 𝜃(𝑤(𝑥)

> Q: how we can use the logistic regression model as a binary classifier?
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Group Activity: Logistic Regression Objective

* Logistic Regression Model: 𝜃(𝑤(𝑥)

* Logistic Loss Function L 𝑤 = "
#
∑$%"# ln(1 + exp −𝑦$𝑤(𝑥$ )

I. Introduce yourself to your neighbor and perhaps make a new friend in this class! 

II. Then, spend several minutes to try to understand whether the formulation makes sense.

(a) What is the probabilistic interpretation of a given regression model 𝜃(𝑤(𝑥)? 

(i.e., How do we compute 𝑃(𝑦$ | 𝑥$)?)

(b) For 𝑦$ = +1, what does the regression model 𝜃(𝑤(𝑥) encourage? Does this make sense?

For 𝑦$ = −1, what does the regression model 𝜃(𝑤(𝑥) encourage? Does this make sense?
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Deriving the Logistic Objective

* Assume 𝐷 ∶ { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } is independently generated

* Goal: pick weights 𝑤 to maximize likelihood of 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤)

Alex Mei | CS 190I 



Deriving the Logistic Objective

* Assume 𝐷 ∶ { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } is independently generated

* Goal: pick weights 𝑤 to maximize likelihood of 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤)

By independence: max 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤) = max∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤)
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Deriving the Logistic Objective

* Assume 𝐷 ∶ { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } is independently generated

* Goal: pick weights 𝑤 to maximize likelihood of 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤)

By independence: max 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤) = max∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤)

Since log is monotonically increasing: = max ln(∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤))
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Deriving the Logistic Objective

* Assume 𝐷 ∶ { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } is independently generated

* Goal: pick weights 𝑤 to maximize likelihood of 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤)

By independence: max 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤) = max∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤)

Since log is monotonically increasing: = max ln(∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤))

By log product rule: = max∑$%"# ln(𝑃 𝑦$ 𝑥$; 𝑤 )
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Deriving the Logistic Objective

* Assume 𝐷 ∶ { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } is independently generated

* Goal: pick weights 𝑤 to maximize likelihood of 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤)

By independence: max 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤) = max∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤)

Since log is monotonically increasing: = max ln(∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤))

By log product rule: = max∑$%"# ln(𝑃 𝑦$ 𝑥$; 𝑤 )

Maximizing x is minimizing –x: = min∑$%"# −ln(𝑃 𝑦$ 𝑥$; 𝑤 )
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Deriving the Logistic Objective

* Assume 𝐷 ∶ { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } is independently generated

* Goal: pick weights 𝑤 to maximize likelihood of 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤)

By independence: max 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤) = max∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤)

Since log is monotonically increasing: = max ln(∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤))

By log product rule: = max∑$%"# ln(𝑃 𝑦$ 𝑥$; 𝑤 )

Maximizing x is minimizing –x: = min∑$%"# −ln(𝑃 𝑦$ 𝑥$; 𝑤 )

By log power rule: = min∑$%"# ln( "
+ 𝑦$ 𝑥$; 𝑤

)
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Deriving the Logistic Objective

* Assume 𝐷 ∶ { 𝑥", 𝑦" , … , 𝑥# , 𝑦# } is independently generated

* Goal: pick weights 𝑤 to maximize likelihood of 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤)

By independence: max 𝑃 𝑦", … , 𝑦# 𝑥", … , 𝑥#; 𝑤) = max∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤)

Since log is monotonically increasing: = max ln(∏$%"
# 𝑃(𝑦$|𝑥$; 𝑤))

By log product rule: = max∑$%"# ln(𝑃 𝑦$ 𝑥$; 𝑤 )

Maximizing x is minimizing –x: = min∑$%"# −ln(𝑃 𝑦$ 𝑥$; 𝑤 )

By log power rule: = min∑$%"# ln( "
+ 𝑦$ 𝑥$; 𝑤

)

Substitute probabilistic interpretation: = min∑$%"# ln( "
,(.#/$0#)

) = min∑$%"# ln(1 + exp(−𝑦$𝑤(𝑥$))

This is an example of how to clearly 
and concisely show your work! Do 
not write long essays for math 
questions! Assignments are graded 
by both recall AND precision.
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Do We Need An Objective?

Recall from Linear Regression

* Objective: L w = | 𝑋𝑤 − 𝑦 |2
2

* Gradient: ∇/𝐿 𝑤 = 𝑋(𝑋𝑤 − 𝑋(𝑦

* Closed Form Solution: 𝑤∗ = (𝑋(𝑋)3"𝑋(𝑦

Alex Mei | CS 190I 



Do We Need An Objective?

Recall from Linear Regression

* Objective: L w = | 𝑋𝑤 − 𝑦 |2
2

* Gradient: ∇/𝐿 𝑤 = 𝑋(𝑋𝑤 − 𝑋(𝑦

* Closed Form Solution: 𝑤∗ = (𝑋(𝑋)3"𝑋(𝑦

For Logistic Regression

* Objective: L 𝑤 = "
#
∑$%"# ln(1 + exp −𝑦$𝑤(𝑥$ )

* Closed-Form Solution: unfortunately, none exists ._.

* Instead, we must use a variation of gradient descent!
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Gradient Descent Algorithm

Alex Mei | CS 190I 



Performance Measures

* Accuracy: (+*(4
(+*(4*5+*54

* Precision: (+
(+*5+

(maximizing precision is minimizing false alarms)

* Recall: (+
(+*54

(maximizing recall is minimizing overlooked cases)

* F1 Score: 2∗+6)7$8$9#∗:)7;<<
+6)7$8$9#*:)7;<<

(harmonic balance between precision and recall) 
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Changing the Decision Threshold

* If greater than threshold, classify positive; else, classify negative

* Default threshold: midpoint of range; for sigmoid activated logistic regression choose 0.5

> Q: what if we want to maximize precision?

> Q: what if we want to maximize recall?
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At-Home Exercise
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HW1 Talk
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Many slides are adapted from Professor Shiyu Chang at UCSB:

https://code-terminator.github.io/

King of the Changaroos
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Thank you AMSC members for the continued support.
Want to join? Apply now by talking to the founders!

https://code-terminator.github.io/

