
Greedy Algorithms
A commonly used paradigm for combinatorial algorithms.
Informally, in “combinatorial” problems, feasible solutions are subsets of discrete input set, so
enumerable in exponential time (say, ). Greedy algorithms find the optimal by searching
only a tiny fraction of this space.
A precise definition is difficult, but informally an algorithm uses “greedy design principle” if it
makes a series of choices, and each choice is locally optimal.
Why should one expect such a myopic strategy to succeed? Indeed, when greedy strategy
works, it says something interesting about the structure(nature) of the problem itself!

𝑂( )2𝑛

Making Change
The coins in US come in four denominations: 25, 10, 5, 1.
The “change making” problem is to determine how to convert any amount into minimum
number of coins.
Given an integer , find a combination of coins that sum to X using the least
number of coins.
Formally, find integers a, b, c, d with minimum sum (a+b+c+d) so that 

𝑋 ∈ {0, 1, . . . , 99}

𝑋 = 25𝑎 + 10𝑏 + 5𝑐 + 1𝑑

In [25]:

Interval Scheduling

Out[25]: [{'quantity': 2, 'coin': 25}, 
 {'quantity': 2, 'coin': 10}, 
 {'quantity': 0, 'coin': 5}, 
 {'quantity': 3, 'coin': 1}]

def makeChange(target: int, coins: list) -> list:
    coins.sort(reverse=True)
    numCoins = []
    
    for coin in coins:
        numCoins.append({"quantity" : target // coin, "coin" : coin})
        target -= target // coin * coin
    
        if not target:
            break
            
    if target != 0:
        raise ValueError(
            "Greedy Algorithm cannot make change with target={} and coins={
            .format(target, coins))
            
    return numCoins  
 
makeChange(73, [25, 10, 5, 1])



Input: a list of N activities that we want to schedule on a single resource.
Each activity specified by a start and an end time; only one activity can be scheduled on the
resource at a time, and each scheduled activity uses the resource continuously between its
start and end time.
What is the maximum possible number of activities we can schedule?

Formally, activities is a set ,where each activity is specified by its start-end
time tuple , with .
This is a combinatorial problem: output is a subset of .
A feasible schedule is a subset in which no two activities overlap.
Objective: find a feasible schedule of maximum size (number of activities).

𝑆 = {1, 2, . . . , 𝑛}

(𝑠(𝑖), 𝑓(𝑖)) 𝑠(𝑖) ≤ 𝑓(𝑖)

{1, 2, . . . , 𝑛}

Algorithm

The correct strategy is to process jobs in the Earliest Finish Time order.
That is, sort the jobs in the increasing order of their finish time. We assume that jobs are given
in this order (by simple relabeling): 

Proof of Correctness

Lemma: For any , we have that . (i.e. ith job in greedy finishes no later
than the ith job in the optimal.)
Proof:

1. True for , by the design of greedy.
2. Inductively assume this is true for all jobs up to , and prove it for .
3. The induction hypothesis says that .
4. Since , we must also have .
5. So, the ith job selected by optimal is also available to the greedy as its ith job candidate,

so whatever job greedy picks it must have .
6. This proves the lemma.

Theorem: The greedy solution is optimal for the activity selection problem.
Proof:

1. By contradiction. Suppose  is not optimal, and so  must have more jobs than .
That is, .

2. Consider what happens when  in our lemma. We have that . So, the
greedy’s last job has finished by the time ’s kth job finishes.

3. If ,there is some job that optimal accepts after ,and that job is also available to
Greedy; it cannot conflict with anything greedy has scheduled.

4. Because the greedy does not stop until it no longer has any acceptable jobs left, this is a
contradiction.

Runtime

Sorting the jobs takes .
After that, the algorithm makes one scan of the list, spending constant time per job = .
So total time complexity is .

𝑓( ) ≤ 𝑓( ) ≤ 𝑓( ). . .≤ 𝑓( )𝑗1 𝑗2 𝑗3 𝑗𝑛

𝑖 ≤ 𝑘 𝑓( ) ≤ 𝑓( )𝑎𝑖 𝑏𝑖

𝑖 = 1

𝑖 − 1 𝑖

𝑓( ) ≤ 𝑓( )𝑎𝑖−1 𝑏𝑖−1
𝑓( ) ≤ 𝑠( )𝑏𝑖−1 𝑏𝑖 𝑓( ) ≤ 𝑠( )𝑎𝑖−1 𝑏𝑖

𝑓( ) ≤ 𝑓( )𝑎𝑖 𝑏𝑖

𝐴 𝑂𝑃𝑇 𝐴

𝑚 > 𝑘

𝑖 = 𝑘 𝑓( ) ≤ 𝑓( )𝑎𝑘 𝑏𝑘
𝑂𝑃𝑇

𝑚 > 𝑘 𝑘

𝑂(𝑛𝑙𝑜𝑔(𝑛))

𝑂(𝑛)

𝑂(𝑛𝑙𝑜𝑔(𝑛)) + 𝑂(𝑛) = 𝑂(𝑛𝑙𝑜𝑔(𝑛))



In [37]:

Interval Partitioning
Given a set of activities, schedule them all using a minimum number of machines.

Algorithm

Sort activities by start time.
Start Room 1 for activity 1.
For i = 2 to n, if activity i can fit in any existing room, schedule it in that room.

Proof of Correctness

Define depth of input set as the maximum number of activities that are concurrent at any time.
Let depth be .
Optimal must use at least  rooms because a single room can only house 1 activity and there
are  concurrent activities that all need different rooms.
Greedy uses no more than  rooms because a new room is only created when existing rooms
are full, meaning the maximum concurrent amount will be the maximum number of rooms
created.

Runtime

Sorting the jobs takes .
After that, the algorithm makes one scan of the list, spending a contant operation to check for
an open room, and  operations to insert the a new room, or replace an existing room
= .
So total time complexity is .

𝐷

𝐷

𝐷

𝐷

𝑂(𝑛𝑙𝑜𝑔(𝑛))

𝑂(𝑙𝑜𝑔(𝑛))

𝑂(𝑛𝑙𝑜𝑔(𝑛))

𝑂(𝑛𝑙𝑜𝑔(𝑛)) + 𝑂(𝑛𝑙𝑜𝑔(𝑛)) = 𝑂(𝑛𝑙𝑜𝑔(𝑛))

Out[37]: {'length': 3, 'activities': [(0, 2), (3, 6), (6, 8)]}

def maxActivities(activityList: list) -> dict:
    sortedList = sorted(activityList, key=lambda x: x[1])
    prevEndTime = 0
    activities = list()
    
    for activity in sortedList:
        if activity[0] >= prevEndTime:
            activities.append(activity)
            prevEndTime = activity[1]
            
    return {"length" : len(activities), "activities" : activities}
 
maxActivities([(3,6),(1,4),(4,10),(6,8),(0,2)])



In [6]:

Huffman Codes
Goal: encode characters in as few characters as possible
With variable encoding length, higher frequency characters can be encoded in shorter
bitstrings for higher compression
Prefix Codes: no codeword can be a prefix of another word
Encode in a binary tree: characters are leaves and branches are bits (path to leaf is binary
encoding)
Huffman codes are only good at encoding static characters. Dynamic data and words have
better encoding methods.

Measuring Optimality

Let  be the input alphabet (set of distinct characters).
Let  be the frequency of letter  in .
Let  be the tree for a prefix code, and  the depth of  in .
The number of bits (bit complexity) needed to encode our file using this code is:

We want a code that achieves the minimum possible value of .

Optimal Tree Property: Tree corresponding to optimal code must be full: that is,each internal node
has two children. Otherwise we can improve the code.

Huffman’s Algorithm

The algorithm best understood as building the binary tree  that represents its codes.

𝐶

𝑓(𝑝) 𝑝 𝐶

𝑇 (𝑝)𝑑𝑇 𝑝 𝑇

𝐵(𝑇 ) = 𝑓(𝑝) (𝑝)∑
𝑝∈𝐶

𝑑𝑇

𝐵(𝑇 )

𝑇

Out[6]: {'count': 2}

import heapq
 
def minPartitions(activityList: list) -> dict:
    if not activityList:
        return 0
    
    sortedList = sorted(activityList, key=lambda x: x[0])
    endTimes = []
    heapq.heappush(endTimes, sortedList[0][1])
    
    for i in range(1, len(sortedList)):
        activity = sortedList[i]
        
        if activity[0] >= endTimes[0]:
            heapq.heappushpop(endTimes, activity[1])
        else:
            heapq.heappush(endTimes, activity[1])
            
    return {"count": len(endTimes)}
 
minPartitions([(1,6),(8,13),(15,42),(1,21),(25,31),(35,42)])



The algorithm best understood as building the binary tree  that represents its codes.
Initially, each letter represented by a single-node tree, whose weight equals the letter’s
frequency.
Huffman repeatedly chooses the two smallest trees (by weight), and merges them. The new
tree’s weight is the sum of the two children’s weights.
If there are  letters in the alphabet, there are  merges

Proof of Optimality

We will use induction on the size of the alphabet .
The base case of  is trivial: we have a depth 1 tree, with two leaves, each with code
length 1.
In general, assume induction holds for , and prove for .
Take the last two characters  and , combine them into a single new character  with
freq. 
With  removed and replaced with , we have a set of size .
By induction, we find the optimal code tree of . This tree has  at some leaf.
To obtain tree for ,we attach nodes  and  as children of .
We will show that given optimal tree for , this new tree is optimal for .
Still one problem: in our construction, the nodes  and  will necessarily end upassiblings.
(That is, the codes for these two will be identical except in the last bit.)
How can we choose  and  at the onset so that in the optimal tree they are guaranteed
to have this property? This is where Huffman’s greedy choice enters the proof: we will choose
two lowest freq. characters.

Lemma:

Suppose  and  are two letters of lowest frequency. Then, there exists anoptimal prefix code
in which codewords for  and  have the same (and maximum) length and they differ only in
the last bit.

Proof:

Start with an optimal prefix code tree , and modify it so  and  are sibling leaves of max
depth, without increasing total cost.
In modified tree,  and  have the same code length, different only in the last bit.
Assume optimal tree does not satisfy the claim, and suppose that  and  are the two
characters that are sibling leaves of max depth in .
Without loss of generality, assume that  and 
We have  and . (x, y, a, bneed not all be distinct.)
First transform  into  by swapping the positions of x and a
Since  and , swap does not increase freq * depth cost:

Next, transform  into  by exchanging  and , which also does not increase cost.
So, we get that . If  was optimal, so is , but in  and  are
sibling leaves at the max depth.

𝑇

𝑛 𝑛 − 1

|𝐶|

|𝐶| = 2

|𝐶| = 𝑛 − 1 |𝐶| = 𝑛

𝑥𝑛−1 𝑥𝑛 𝑧

𝑓(𝑧) = 𝑓( ) + 𝑓( ).𝑥𝑛−1 𝑥𝑛
,𝑥𝑛−1 𝑥𝑛 𝑧 | | = 𝑛 − 1𝐶 ′

𝐶 ′ 𝑧

𝐶 𝑥𝑛−1 𝑥𝑛 𝑧

𝐶 ′ 𝐶

𝑥𝑛−1 𝑥𝑛

𝑥𝑛−1 𝑥𝑛

𝑥 𝑦

𝑥 𝑦

𝑇 𝑥 𝑦

𝑥 𝑦

𝑎 𝑏

𝑇

𝑓(𝑎) ≤ 𝑓(𝑏) 𝑓(𝑥) ≤ 𝑓(𝑦)

𝑓(𝑥) ≤ 𝑓(𝑎) 𝑓(𝑦) ≤ 𝑓(𝑏)

𝑇 𝑇 ′

(𝑎) ≥ (𝑥)𝑑𝑇 𝑑𝑇 𝑓(𝑎) ≥ 𝑓(𝑥)

𝐵(𝑇 ) − 𝐵( ) = [𝑓(𝑝) (𝑝)] − [𝑓(𝑝) (𝑝)]𝑇 ′

∑
𝑝

𝑑𝑇 ∑
𝑝

𝑑′𝑇

= [𝑓(𝑥) (𝑥) + 𝑓(𝑎) (𝑎)] − [𝑓(𝑥) (𝑥) + 𝑓(𝑎) (𝑎)]𝑑𝑇 𝑑𝑇 𝑑′𝑇 𝑑′𝑇
= [𝑓(𝑥) (𝑥) + 𝑓(𝑎) (𝑎)] − [𝑓(𝑥) (𝑎) + 𝑓(𝑎) (𝑥)]𝑑𝑇 𝑑𝑇 𝑑𝑇 𝑑𝑇

= [𝑓(𝑎) − 𝑓(𝑥)] ∗ [ (𝑎) − (𝑥)]𝑑𝑇 𝑑𝑇
≥ 0

𝑇 ′ 𝑇 ″ 𝑦 𝑏

𝐵( ) ≤ 𝐵( ) ≤ 𝐵(𝑇 )𝑇 ″ 𝑇 ′ 𝑇 𝑇 ″ 𝑥𝑇 ″ 𝑦



Proof of optimality:

Let  be the optimal tree (induction) for .
We obtain our final tree  by attaching leaves  as children of .
What is the connection between costs of  and ?
For all  depth is the same in both trees, so no difference. For , we have 

. So, the cost increase from modifying  to  is: 
 because

The rest of the argument is via contradiction.
Suppose  is not an optimal prefix code, and another tree  is claimed to be optimal,
meaning .
By previous lemma,  has  and  as siblings. Imagine replacing parent of  with a new
leaf ,with freq. , and call this new tree .
Then,  which contradicts
the claim that  is an optimal prefix code for .

Time Complexity

Time complexity is ). Initial sorting plus  heap operations.

𝑇1 𝐶 + {𝑧} − {𝑥, 𝑦}

𝑇 𝑥, 𝑦 𝑧

𝐵(𝑇 ) 𝐵( )𝑇1
𝑝 ≠ 𝑥, 𝑦 𝑥, 𝑦

(𝑥) = (𝑦) = (𝑧) + 1𝑑𝑇 𝑑𝑇 𝑑𝑇1 𝑇1 𝑇

𝐵(𝑇 ) − 𝐵( ) = 𝑓(𝑥) + 𝑓(𝑦)𝑇1
𝑓(𝑥) (𝑥) + 𝑓(𝑦) (𝑦) = [𝑓(𝑥) + 𝑓(𝑦)] ∗ [ (𝑧) + 1] = 𝑓(𝑧) (𝑧) + [𝑓(𝑥) + 𝑓(𝑦)]𝑑𝑇 𝑑𝑇 𝑑𝑇1 𝑑𝑇1

𝑇 𝑇0
𝐵( ) < 𝐵(𝑇 )𝑇0

𝑇0 𝑥 𝑦 𝑥, 𝑦

𝑧 𝑓(𝑧) = 𝑓(𝑥) + 𝑓(𝑦) 𝑇 ′
1

𝐵( ) = 𝐵( ) − 𝑓(𝑥) − 𝑓(𝑦) < 𝐵(𝑇 ) − 𝑓(𝑥) − 𝑓(𝑦) < 𝐵( )𝑇 ′
1 𝑇 ′ 𝑇1
𝑇1 = 𝐶 + {𝑧} − {𝑥, 𝑦}𝐶 ′

𝑂(𝑛𝑙𝑜𝑔𝑛 𝑛

In [ ]:

Horn Formulas
Form of boolean logic, and often used in AI systems for logical reasoning.
Each boolean variable represents an event (or possibility), such as
x = the murder took place in the kitchen
y = the butler is innocent
z = the colonel was asleep at 8pm.
Recall that Boolean variable can only take one of two values , and a literal is
either a variable  or its negation 

Constraints among variables represented by two kinds of clauses:

1. Implication: Left-hand-side is an AND of any number of positive literals, and right-hand-side is
a single positive literal.  It asserts that “if the colonel was asleep at 8 pm, and the
murder took place at 8pm, then the murder took places in the kitchen.” A degenerate
statement of the type  means that  is unconditionally true. For instance, “the murder
definitely occurred in the kitchen.”

2. Negative: Consists of an OR of any number of negative literals, as in , where 
 means that constable, colonel, and butler is innocent. This clause asserts that

“they can’t all be innocent.”

A Horn formula is a set of implications and negative clauses.
Problem: Given a Horn formula, decide if it is satisfiable, namely, is there an as-signment of
variables so that all clauses are satisfied. Such an assignment is called asatisfying assignment.

{𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

𝑥 𝑥
⎯ ⎯⎯

(𝑧 ∩ 𝑢) → 𝑥

→ 𝑥 𝑥

( ∪ ∪ )𝑢
⎯ ⎯⎯

𝑡
⎯⎯

𝑦
⎯ ⎯⎯

𝑢, 𝑡, 𝑦, 𝑟𝑒𝑠𝑝. ,

# Insert Code



Examples:

The Horn formula  has a satisfying assignment 
.

But the formula  is not satisfiable.

Algorithm

Brute force approach would take 2^n to account for powerset of inputs.
The nature of Horn clauses suggests a natural greedy algorithm:
Initially set all variables to false.
While there is an unsatisfied Implication clause, set its RHS to true.
If all pure negative clauses are satisfied, return the assignment; otherwise, formula is not
satisfiable.

Correctness Proof

Clearly, if the algorithm returns a satisfying assignment, then it is a valid assignment because it
satisfies all negative and implication clauses.
To show that if the algorithm does not find a satisfying assignment, there is none, we observe
that the algorithm maintains the following invariant. If a certain set of variables is set to true,
then they must be true in any satisfying assignment. Namely, we only set a variable true when
it is forced upon us.

Time Complexity

With some care the greedy algorithm can be implemented in linear time (in the length of the
formula).

→ 𝑥, → 𝑦, 𝑥 ∩ 𝑢 → 𝑧, ∪ ∪𝑥
⎯ ⎯⎯

𝑦
⎯ ⎯⎯

𝑧
⎯ ⎯⎯

𝑢 = 0, 𝑥 = 1, 𝑦 = 1, 𝑧 = 0

→ 𝑥, → 𝑦, 𝑥 ∩ 𝑦 → 𝑧, ∪ ∪𝑥
⎯ ⎯⎯

𝑦
⎯ ⎯⎯

𝑧
⎯ ⎯⎯

In [ ]:

Set Cover
Input is a (ground) set of  elements  and a collection of  subsets 

, with each .
The problem is to choose the smallest number of subsets whose union is B.
Example: , and . One can cover all items
by choosing all four sets, but sets  suffice.

𝑛 𝐵 = {1, 2, . . . , 𝑛} 𝑚

𝑆 = { , , . . . , }𝑆1 𝑆2 𝑆𝑚 ⊆ 𝐵𝑆𝑖

𝐵 = {1, 2, 3, 4, 5} {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}}

{1, 2, 3}, {4, 5}

Algorithm

Repeat until all elements of  are covered: pick the set  containing the largest number of
still-uncovered elements.

Runtime

If the optimal solution uses  sets, the greedy uses  sets.

𝐵 𝑆𝑡

𝑘 𝑂(𝑘𝑙𝑛(𝑛))

# Insert Code



In [ ]:

Dijkstra’s Algorithm
1. Let  be the set of explored nodes.
2. Let E be the shortest path distance from  to , for each .
3. Initially , and , for all .
4. While  do
5. Select  with the minimum value of 
6. Add  to ,set .

𝑆

𝑑(𝑢) 𝑠 𝑢 𝑢 ∈ 𝑆

𝑆 = {𝑠}, 𝑑(𝑠) = 0 𝑑(𝑢) = 1 𝑢 ≠ 𝑠

𝑆 ≠ 𝑉

𝑣 ∉ 𝑆 (𝑣) = 𝑑(𝑢) + 𝑐𝑜𝑠𝑡(𝑢, 𝑣)𝑑′ min(𝑢,𝑣),𝑢∈𝑆
𝑣 𝑆 𝑑(𝑣) = (𝑣)𝑑′

Correctness Proof

1. Argue that at any time  is the shortest path distance to , for all .
2. Consider the instant when node  is chosen by the algorithm. Let  be the edge, with 

, that is incident to .
3. Suppose, for the sake of contradiction, that  is not the shortest path distance

to . Instead a shorter path  exists to .
4. Since that path starts at ,it has to leave  at some node. Let  be that node, and let 

be the edge that goes from  to .
5. So our claim is that  is shorter than 

. But note that the algorithm chose  over , so it must be that 
.

6. In addition, since , this contradicts our hypothesis that  is shorter than 
.

7. Thus, the  is correct shortest path distance.

𝑑(𝑣) 𝑣 𝑣 ∈ 𝑆

𝑣 (𝑢, 𝑣)

𝑢 ∈ 𝑆 𝑣

𝑑(𝑢) + 𝑐𝑜𝑠𝑡(𝑢, 𝑣)

𝑣 𝑃 𝑣

𝑠 𝑆 𝑥 𝑦 ∉ 𝑆

𝑆 𝑆
⎯ ⎯⎯⎯

𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ) = 𝑑(𝑥) + 𝑐𝑜𝑠𝑡(𝑥, 𝑦) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑦, 𝑣)

𝑑(𝑢) + 𝑐𝑜𝑠𝑡(𝑢, 𝑣) 𝑣 𝑦

𝑑(𝑢) + 𝑐𝑜𝑠𝑡(𝑢, 𝑣) ≤ 𝑑(𝑥) + 𝑐𝑜𝑠𝑡(𝑥, 𝑦)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑦, 𝑣) > 0 𝑃

𝑑(𝑢) + 𝑐𝑜𝑠𝑡(𝑢, 𝑣)

𝑑(𝑣) = 𝑑(𝑢) + 𝑐𝑜𝑠𝑡(𝑢, 𝑣)

In [ ]:

Kruskal's Algorithm
1. If the shortest edge connects two previously unconnected vertices, add that edge to the

spanning tree.
2. Continue repeating step 1 until all the vertices are connected.

Correctness Proof

1. For simplicity, assume that all edge costs are distinct so that the MST is unique.Otherwise, add
a tie-breaking rule to consistency order the edges.

2. Proof by contradiction: let  be the first edge chosen by Kruskal that is not in the optimal
MST.

3. Consider the state of the Kruskal just before  is considered.
4. Let  be the set of nodes connected to  by a path in this graph. Clearly, .

(𝑣,𝑤)

(𝑣,𝑤)

𝑆 𝑣 𝑤 ∉ 𝑆

# Insert Code

# Insert Code



5. The optimal MST does not contain  but must contain a path connecting  to ,by virtue
of being spanning.

6. Since  and , this path must contain at least one edge  with  and 
.

7. Note that  cannot be in Kruskal’s graph at the time  was considered because
otherwise  will have been in .

8. Thus,  is more expensive than  because it came after  in Kruskal’s scan
order.

9. If we replace  with  in the optimal MST, it remains spanning and has lower cost,
which contradicts its optimality.

10. So, the hypothesis that  is not in optimal must be false.

(𝑣,𝑤) 𝑣 𝑤

𝑣 ∈ 𝑆 𝑤 ∉ 𝑆 (𝑥, 𝑦) 𝑥 ∈ 𝑆

𝑦 ∉ 𝑆

(𝑥, 𝑦) (𝑣,𝑤)

𝑦 𝑆

(𝑥, 𝑦) (𝑣,𝑤) (𝑣,𝑤)

(𝑥, 𝑦) (𝑣,𝑤)

(𝑣,𝑤)

In [ ]: # Insert Code



Divide and Conquer Algorithms
A general paradigm for algorithm design; inspired by emperors and colonizers.

1. Divide the problem into smaller problems.
2. Conquer by solving these problems.
3. Combine these results together.

Binary Search
Search for x in sorted array A.
If x is equal to the middle element of A, search is complete
If x is less than the middle element of A, search on the left half of A
Else, search on the right half of A

Time Complexity

Let  denote the worst-case time to binary search in an array of length .
Recurrence is .
𝑇 (𝑛) 𝑛

𝑇 (𝑛) = 𝑇 (𝑛/2) + 𝑂(1)

𝑇 (𝑛) = 𝑂(𝑙𝑜𝑔𝑛)

In [2]:

Merge Sort
Sort an unsorted array of numbers A
If array is one element, return A
Otherwise, recursively call mergesort on the left and right halves of A
Then, merge the sorted result of the left and right haves of A

Time Complexity

Let  denote the worst-case time to merge sortan array of length .𝑇 (𝑛) 𝑛

def binarySearch(target: int, arr: list, left: int, right: int) -> int:
    if left > right:
        return -1
    
    middle = (left + right) // 2
    if target == arr[middle]:
        return middle
    elif target < arr[middle]:
        return binarySearch(target, arr, left, middle - 1)
    else: #target > arr[middle]
        return binarySearch(target, arr, middle + 1, right)
    
print(binarySearch(-1, list(range(10)), 0, 9))
print(binarySearch(10, list(range(10)), 0, 9))
print(binarySearch(5, list(range(10)), 0, 9))



Let  denote the worst case time to merge sortan array of length .
Recurrence is .
𝑇 (𝑛) 𝑛

𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑂(𝑛)

𝑇 (𝑛) = 𝑂(𝑛𝑙𝑜𝑔𝑛)

In [ ]:

Multiplying Numbers
We want to multiply two n-bit numbers. Cost is number of elementary bit steps.
Grade school method has  cost:  multiplies,  additions, plus some carries.

Karatsuba's Algorithm

Let  and  be two n-bit numbers. Write  where  and  are
concatenated to form an n-bit number.

 are  bit numbers. (Assume .)

Note that .
Solve 3 subproblems: .
We can get all the terms needed for  by addition and subtraction!

Time Complexity

The recurrence for this algorithm is .
The complexity is .

𝑂( )𝑛2 𝑛2 /2𝑛2

𝑋 𝑌 𝑋 = 𝑎𝑏, 𝑌 = 𝑐𝑑 𝑎𝑏 𝑐𝑑

𝑎, 𝑏, 𝑐, 𝑑 𝑛/2 𝑛 = 2𝑘

𝑋𝑌 = (𝑎 + 𝑏)(𝑐 + 𝑑) = 𝑎𝑐 + (𝑎𝑑 + 𝑏𝑐) + 𝑏𝑑2𝑛/2 2𝑛/2 2𝑛 2𝑛/2

(𝑎 − 𝑏)(𝑐 − 𝑑) = (𝑎𝑐 + 𝑏𝑑) − (𝑎𝑑 + 𝑏𝑐)

𝑎𝑐, 𝑏𝑑, (𝑎 − 𝑏)(𝑐 − 𝑑)

𝑋𝑌

𝑇 (𝑛) = 3𝑇 (𝑛/2) + 𝑂(𝑛) = 𝑂( )𝑛𝑙𝑜 (3)𝑔2

𝑂( ) = 𝑂( )𝑛𝑙𝑜 (3)𝑔2 𝑛1.59

In [ ]:

Recurence Solving
Expand terms until a general formula is reached.
Substitute for base case and solve.
Can also use tree view with number of levels and work per level.
Can solve by induction.

Master Method

Recurrence in the form

Let  where 
Condition:  must be constant
Case 1:  =>  grows faster than . Thus, .
Case 2:  => both terms have same growth rates, thus 
Case 3:  =>  grows slower than . Thus, 

𝑇 (𝑛) = 𝑂( ) + 𝑓( )𝑛𝑙𝑜 (𝑎)𝑔𝑏

∑
𝑖=0

𝑙𝑜 (𝑛−1)𝑔𝑏

𝑎𝑖
𝑛

𝑏𝑖

𝑓(𝑛) = 𝑂( 𝑙𝑜 (𝑛))𝑛𝑝 𝑔𝑘 𝑝, 𝑘 ≥ 0

𝑎 ≥ 1, 𝑏 > 1

𝑝 < 𝑙𝑜 𝑎𝑔𝑏 𝑛𝑙𝑜 (𝑎)𝑔𝑏 𝑓(𝑛) 𝑇 (𝑛) = 𝑂( )𝑛𝑙𝑜 (𝑎)𝑔𝑏

𝑝 = 𝑙𝑜 𝑎𝑔𝑏 𝑂( 𝑙𝑜 (𝑛))𝑛𝑙𝑜 (𝑎)𝑔𝑏 𝑔𝑘+1

𝑝 > 𝑙𝑜 𝑎𝑔𝑏 𝑛𝑙𝑜 (𝑎)𝑔𝑏 𝑓(𝑛) 𝑇 (𝑛) = 𝑂(𝑓(𝑛))

# CODE

# CODE



Matrix Multiplication
Multiply two  matrices: .𝑛 × 𝑛 𝐶 = 𝐴 × 𝐵

Traditional Algorithm

Standard Method: 
For every element in , it takes  computations.
There are  elements in  so it takes .

Strassen's Algorithm

Let  be two  matrices.
Divide matrices  into four  submatrices.

We can rewrite the product matrices as the following:

However, the recurrence for this relation listed below solves to :

Can reduce to seven multiplications using the following matrices:

We can rewrite the product matrices as the following:

The recurrence for this relation listed below solves to :

𝐶[𝑖][𝑗] = 𝐴[𝑖][𝑘] × 𝐵[𝑘][𝑗]∑𝑛𝑘=1
𝐶 𝑂(𝑛)

𝑛2 𝐶 𝑂( )𝑛3

𝐴,𝐵 𝑛 × 𝑛

𝐴,𝐵,𝐶 𝑛/2 × 𝑛/2

𝐴 = ( ) ;𝐵 = ( ) ;𝐶 = ( )𝑎11

𝑎21

𝑎12

𝑎22

𝑏11

𝑏21

𝑏12

𝑏22

𝑐11

𝑐21

𝑐12

𝑐22

= ∗ + ∗𝑐11 𝑎11 𝑏11 𝑎12 𝑏21
= ∗ + ∗𝑐12 𝑎11 𝑏12 𝑎12 𝑏22
= ∗ + ∗𝑐21 𝑎21 𝑏11 𝑎22 𝑏21
= ∗ + ∗𝑐22 𝑎21 𝑏12 𝑎22 𝑏22

𝑂( )𝑛3

𝑇 (𝑛) = 8𝑇 (𝑛/2) + 𝑂( )𝑛2

= ( + )( + )𝑃1 𝑎11 𝑎22 𝑏11 𝑏22
= ( + )( )𝑃2 𝑎21 𝑎22 𝑏11
= ( )( − )𝑃3 𝑎11 𝑏12 𝑏22
= ( )( − )𝑃4 𝑎22 𝑏21 𝑏11
= ( + )( )𝑃5 𝑎11 𝑎12 𝑏22

= ( − )( + )𝑃6 𝑎21 𝑎11 𝑏11 𝑏12
= ( − )( + )𝑃7 𝑎12 𝑎22 𝑏21 𝑏22

= + − +𝑐11 𝑃1 𝑃4 𝑃5 𝑃7
= +𝑐12 𝑃3 𝑃5
= +𝑐21 𝑃2 𝑃4

= + − +𝑐22 𝑃1 𝑃3 𝑃2 𝑃6

𝑂( ) = 𝑂( )𝑛 (7)log2 𝑛2.81

𝑇 (𝑛) = 7𝑇 (𝑛/2) + 𝑂( )𝑛2

Quicksort
Simple, fast, and does not require extra space



Algorithm

Partition among a pivot, splitting into elements smaller than the pivot, denoted , and
elements greater than the pivot, denoted 
Sort  and  recursively
Combine by appending  to 

Time Complexity

 denotes the randomized runtime of Quicksort
Each element randomly likely to be chosen as a pivot so there is  probability that  is the
pivot.
Recurrence denoted by the following relation:

Subtract (2) from (1) to arrive at the following:

Thus, , which is linearithmic.

𝐿

𝑅

𝐿 𝑅

𝑅 𝐿

𝑇 (𝑛)

1/𝑛 𝑖

𝑇 (𝑛) = 1/𝑛 ∗ (𝑇 (𝑖 − 1) + 𝑇 (𝑛 − 1)) + 𝑛 + 1∑
𝑖=1

𝑛

𝑇 (𝑛) = 2/𝑛 ∗ 𝑇 (𝑖 − 1) + 𝑛 + 1∑
𝑖=1

𝑛

𝑇 (𝑛) = 2/𝑛 ∗ 𝑇 (𝑖) + 𝑛 + 1∑
𝑖=0

𝑛−1

(1) : 𝑛 ∗ 𝑇 (𝑛) = 2 ∗ 𝑇 (𝑖) + + 𝑛∑
𝑖=0

𝑛−1

𝑛2

(2) : (𝑛 − 1) ∗ 𝑇 (𝑛 − 1) = 2 ∗ 𝑇 (𝑖) + (𝑛 − 1 + (𝑛 − 1)∑
𝑖=0

𝑛−2

)2

𝑛 ∗ 𝑇 (𝑛) = (𝑛 + 1) ∗ 𝑇 (𝑛 − 1) + 2𝑛

= +
𝑇 (𝑛)

𝑛 + 1

𝑇 (𝑛 − 1)

𝑛

2

𝑛 + 1

= + +
𝑇 (𝑛)

𝑛 + 1

𝑇 (𝑛 − 2)

𝑛 − 1

2

𝑛

2

𝑛 + 1

= +
𝑇 (𝑛)

𝑛 + 1

𝑇 (2)

3 ∑
𝑖=3

𝑛
2

𝑖

= 𝑂(1) + 2 ln(𝑛)
𝑇 (𝑛)

𝑛 + 1

𝑇 (𝑛) ≤ 2(𝑛 + 1) ln(𝑛)
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Extrema Finding
We can find the maximum and minimum in linear time with n comparisons.
We can divide and conquer to find both the min and max in 3n/2 comparisons.

Min Algorithm

Initialize current minimum to be the first element.
Iterate through the rest of the elements; if any element is less than the current minimum, set it
as the new current minimum.

Min Max Algorithm

If the list  contains a single element, .
Divide into two equal sublists  and recursively find both the min and the max of both
sublists. Then, return the more extreme of the two results for each min and max.

Time Complexity

2 calls on half the list + 2 comparisons has a recurrence of the following:

Using the recurrence expansion method, we get...

...

Use  Then  when 

Substitute  to get the recursion 

𝐴 𝑚𝑖𝑛 = 𝑚𝑎𝑥 = 𝐴[0]

,𝐴1 𝐴2

𝑇 (𝑛) = 2𝑇 (𝑛/2) + 2

𝑇 (𝑛) = 2 ∗ (2 ∗ 𝑇 (𝑛/ ) + 2) + 2 = ∗ 𝑇 (𝑛/ ) + + 222 22 22 22

𝑇 (𝑛) = ∗ (2 ∗ 𝑇 (𝑛/ ) + 2) + + 2 = ∗ 𝑇 (𝑛/ ) + + + 222 23 22 23 23 23 22

𝑇 (𝑛) = ∗ 𝑇 (𝑛/ ) + +. . . +2 = ∗ 𝑇 (𝑛/ ) + 2( +. . . +2 + 1)2𝑖 2𝑖 2𝑖 2𝑖 2𝑖 2𝑖−1

𝑇 (𝑛) = ∗ 𝑇 (𝑛/ ) + 2( − 1) = ∗ 𝑇 (𝑛/ ) + 2 ∗ − 22𝑖 2𝑖 2𝑖 2𝑖 2𝑖 2𝑖

𝑇 (2) = 1. 𝑛/ = 22𝑖 𝑖 = 𝑛/2log2

𝑖 𝑇 (𝑛) = 𝑛/2 + 2 ∗ 𝑛/2 − 2 = 3𝑛/2 − 2

In [3]:

1 

def findMin(l: list) -> float:
    minimum = l[0]
    for element in l[1:]:
        minimum = element if element < minimum else minimum
    return minimum
print(findMin(list(range(10, 0, -1))))



In [6]:

Linear Time Selection
Find the item of rank k in the list (indexed 1 as smallest and n as largest).

Algorithm

Divide items into  groups of 5 each.
Find the median of each group using sorting.
Recursively find median of  group medians.
Partition using median-of-median, , as a pivot.
Let low side have  items and high side have  items. If , call this algorithm on the
low side. Else, call this algorithm on the high side for rank .

Correctness Proof

The base case is trivial.
If we call the low side, when , we consider all items not in the quadrant greater than .
We use the inductive hypothesis to assume this recursion returns the correct result.
Without loss of generality, we can apply this to the high side as well.

Time Complexity

Recursively finding the group median is a recursive call of .
Recrusively calling the low or high side is a recursive call of  as there are 
groups contributing at least  items to the opposite side.
All other work can be done in linear time.
The recurrence relation is the following:

We can inductively verify  for some constant :

Choose c so that  beats  for all . Thus, , meaning it runs in linear time.

𝑛/5

𝑛/5

𝑥

𝑠 𝑛 − 𝑠 𝑘 ≤ 𝑠

𝑘 − 𝑠

𝑘 ≤ 𝑥 𝑥

𝑇 (𝑛/5)

𝑇 (7𝑛/10) 1/2 ∗ 𝑛/5

3

𝑇 (𝑛) ≤ 𝑇 (𝑛/5) + 𝑇 (7𝑛/10) + 𝑂(𝑛)

𝑇 (𝑛) ≤ 𝑐𝑛 𝑐

𝑇 (𝑛) ≤ 𝑐(𝑛/5) + 𝑐(7𝑛/10) + 𝑂(𝑛)

𝑇 (𝑛) ≤ (9/10)𝑐𝑛 + 𝑂(𝑛) ≤ 𝑐𝑛

𝑇 (𝑛) ≤ 𝑂(𝑛) ≤ 𝑐𝑛/10

𝑐𝑛/10 𝑂(𝑛) 𝑛 𝑇 (𝑛) ≤ 𝑐𝑛

(0, 19) 

def minMax(l: list) -> tuple:
    if len(l) == 1:
        return (l[0], l[0])
    elif len(l) == 2:
        return (l[0], l[1]) if l[0] < l[1] else (l[1], l[0])
    else:
        half = len(l) // 2
        min1, max1 = minMax(l[:half])
        min2, max2 = minMax(l[half:])
        minimum = min1 if min1 < min2 else min2
        maximum = max1 if max1 > max2 else max2
        return (minimum, maximum)
print(minMax(list(range(20))))  



( ) ( )

In [ ]:

Convex Hulls
Smallest convex shape that contains a set of points

Algorithm

Sort points by x-coordinates.
Partition points into equal halves  (left) and  (right).
Recursively compute the convex hull of  and .
Merge the convex hulls of  and  to arrive at the overall convex hull: start at the rightmost
point  of  and leftmost point  of ; while  is not the lower tangent of the convex hulls
of  and : move  clockwise around points of  until it is a tangent of , move  counter
clockwise until it is a tangent of . Then, repeat the process for the upper tangent in the
reverse direction. Remove edges that were travelled in the rotation.

Correctness Proof

Tangent of both objects does not cutoff any point
Tangent of both objects also does not add any additional unnecessary space
We explicitly check for tangent of both sides and remove unnecessary edges

Time Complexity

Initial sorting takes .
Recurrence =  with  for tangent merging.
Recurrence solves to .

𝐴 𝐵

𝐴 𝐵

𝐴 𝐵

𝑎 𝐴 𝑏 𝐵 𝑎, 𝑏

𝐴 𝐵 𝐴 𝐴 𝐴 𝑏

𝐵

𝑂(𝑛 log(𝑛))

𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑂(𝑛) 𝑂(𝑛)

𝑂(𝑛 log(𝑛))
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