
CS 138 Notes: Formal Languages & Automata

Alex Mei

Summer, 2020

1 Regular Languages

1.1 Definitions

Alphabet (Σ): finite, non-empty set of symbols in a language

String: finite sequence of symbols in the alphabet; | s | denotes the length of string s; st denotes

string s concatenated with string t

Substring: s is a substring of x if there exists strings y, z such that x = ysz

Prefix: for a string x = sy, s is a prefix of string x

Suffix: for a string x = ys, s is a suffix of string x

Reversal (sR): for a string s = s1s2...sk, s
R = sk...s2s1

Reversal Property: (uv)R = vRuR

Language: set of strings created from an alphabet

1.2 Language Operations

Union: A ∪B = elements in A or B (or both)

Concatenation: A ∩B = elements in A and B

Difference: A−B = elements in A and not B

Concatenation AB = {xy | x ∈ A, y ∈ B}
Exponentiation: Ak = A...A (k times)

Star: A∗ = A0 ∪ A1 ∪ ...
Language Property: L ⊆ Σ∗

1.3 Deterministic Finite Automata (DFA)

Definition: DFA is a 5-tuple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is the alphabet, δ is

the transition function such that δ : Q × Σ → Q, q0 is the starting state such that q0 ∈ Q, and F is

the set of accepting states where F ⊆ Q

1

Accept: A DFA M is said to accept string w (where w only consists of characters in the alphabet)

iff there exists a sequence of states s0...sn such that s0 = q0; si = δ(si−1, ai), a < i ≤ n; sn ∈ F
Recognized Language: L(M) denotes a language recognized by an automata; all languages recog-

nized by DFAs are regular

DFA Properties: finite number of states; input is finite; reads a single character at a time from the

left; only know current state; explicit transitions for each state and each symbol in the alphabet

1.4 Nondeterministic Finite Automata (NFA)

Definition: NFA is a 5-tuple (Q,Σ, δ, q0, F) similar to a DFA; the difference is the transition function,

δ : Q× Σε → P(Q) where Σε = Σ ∪ {ε}
Nondeterminism: states do not require unique transitions from one state to another

Accept: a string is accepted by an NFA only if the entire input is read and the automata ends at an

accepting state by at least one possibility

Epsilon Transition: a transition reading an empty string (valid for NFA only)

1.5 NFA to DFA

Theorem 1.3.9: Given an NFA N = (Q,Σ, δ, q0, F), construct a DFA D = (Q′,Σ′, δ′, q′0, F
′): Q′ =

P(Q), q′0 = q0, F
′ = {s ∈ Q′ : s ∩ F 6= ∅}, and δ(s, a) =

⋃
t∈S closure(δ(t, a))

Closure Function: returns set of all possible states reachable using 0 or more epsilon transitions

1.6 Closure Properties

Definition: an operation applied to only regular languages will result in a regular language

Closed Operations: union, concatenation, complement, star, intersection

1.7 Regular Expressions

Definition: descriptive form of regular languages

Valid Expressions: ∅, ε, a ∈ Σ, r1 | r2, r1 · r2, r1∗ where r1, r2 are regular and | denotes union

Order of Precedence: star, concatenation, union

1.8 Nonregular Languages

Pumping Lemma: if L is a regular language, then there exists a nonzero pumping length p such

that if w ∈ L and | w |≥ p then w can be divided into 3 substrings w = xyz such that the following

conditions hold: xyiz ∈ L for i ≥ 0, | y |> 0, and | xy |≤ p

Showing Nonregularity: use pumping lemma to arrive at a contradiction that there exists a string

2

in a language that cannot be pumped and arrive at a contradiction

Using Closure Properties: if a language is known to be regular, apply an operation closed under

regular languages to that language with the questioned language and prove the result is nonregular

to arrive at a contradiction

2 Context Free Languages

2.1 Context Free Grammars (CFG)

Variables: rules are applied and variables are substituted with values

Context Free: irrelevant of surrounding context of variables

Derivation Tree: tree to show which rules of a CFG were applied at which step

Terminals: terminating characters (symbols in the alphabet)

Definition: A CFG is a 4-tuple: (V,Σ, R, S) where V is the set of nonterminals (variables), Σ is the

set of terminals, R is the set of rules R : V → (V | Σ)∗, and S is the start symbol where S ∈ V (Note:

V ∩ Σ = ∅)
Language: The language of a CFG is L = {w ∈ Σ∗ : s→∗ w}
Closed Operations: union, concatenation, star, reversal

Proving Properties: use induction to prove L(G) ⊆ L where L is a language of the described

property

Proving Equivlence: prove both L(G) ⊆ L and L ⊆ L(G) to show L = L(G) using induction

2.2 Chomsky Normal Form (CNF)

Definition: A CFG is in CNF iff every rule is in one of the following forms: A→ BC,A→ a, S → ε

where S is the start symbol and B,C 6= S

Converting to CNF: add new start symbol; eliminate non-singleton terminals; decompose rules

with more than 2 nonterminals; remove epsilon transitions; remove unit rules

2.3 Pushdown Automata

Description: NFA + stack memory

Definition: A PDA is a 6-tuple: (Q,Σ,Γ, δ, q0, F) where Σ is the input alphabet, Γ is the tape

alphabet, and δ : Q× Σε × Γε → P(Q× Γε)

Accept: A PDA accepts input w if w = w1w2...wn such that wi ∈ Σε, there exists a sequence of

states s0, s1, ..., sn ∈ Q, and there exists strings y0, y1, ...yn ∈ Γ representing the state of the stack

such that s0 = q0, y0 = ε, sn ∈ F , and (si, b) ∈ δ(si−1, wi, a) where yi−1 = at, yi = bt, for a, b ∈ Γε, and

t ∈ Γ∗

3

Note: a PDA with deterministic ability is not the same as a nondeterministic PDA

2.4 CFG to PDA

Idea: Push $ and start symbol to stack; repeat the following: if top of stack is a nonterminal, pop it

and push the right side of the nonterminal, if the top of the stack is a terminal, match it with current

input character, and if the top of the stack is $, go to the accept state

2.5 Non-Context Free Languages

Pumping Lemma: if L is a CFL, then there exists a nonzero pumping length p such that if w ∈ l
and | w |≥ p, then w can be divided into 5 pieces uvxyz such that uvixyiz ∈ L for i ≥ 0, | vy |> 0,

and | vxy |≤ p

3 Unrestricted Languages

3.1 Definitions

Subsets: Regular ⊆ Linear ⊆ Deterministic Context Free ⊆ Context Free ⊆ Context Sensitive ⊆
Unrestricted

Context Sensitive: has rules such as uAv → uyw such that y ∈ (v ∪ Σ)∗

3.2 Turing Machines (TM)

Description: DFA + Infinite Linked List

Results: A TM halts when it transitions to an explicit accept or reject state; a TM may loop in-

finitely and never halt

Definition: A TM is a 7-tuple: (Q,Σ,Γ, δ, q0, qaccept, qreject) where Γ is the tape alphabet; δ :

Q× Γ→ Q× Γ× {L,R}
Configuration: The configuration of a TM is uqv where u ∈ Γ∗ is the tape contents left of the

current position, q ∈ Q is the current state, and v ∈ Gamma is the tape contents of current posi-

tion and everything to the right (excluding blank symbols); the configuration uaqibv yields uqjacv iff

δ(qi, b) = (qj, c,K) and the configuration uaqibv yields uacqjv iff δ(qi, b) = (qj, c, R)

Standard Turing Machine: input starts at left most character; no blank characters to left of input;

the left most end yields the same position if attempting to move left

Recognized Languages: languages recognized by TMs are Turing-Recognizable Languages (syn-

onyms with semi-decidable/enumerable languages)

Decider: a turing machine that is guaranteed to halt for all inputs

Decidable Languages: a language decidable by a Turing machine

4

Subsets: Decidable ⊆ Turing Recognizable ⊆ Non TR Language

Closure Operations (TR): union, intersection, concatenation, star

Closure Operations (Decidable): union, intersection, concatenation, star, complement

Property: A language is decidable iff it is Turing recognizable and the complement is Turing recog-

nizable

3.3 TM Variants

Definition: Variant of a TM able to be simulated by standard TM (via proof that standard can be

simulated by variant and vice versa)

MultiTape TM: multiple tapes with transitions that specify movement for each tape

Two Way Infinite TM: tape that extends infinitely to the left and right

Other Variants: Nondeterministic TM, lambda calculus, recursively enumerable functions, unre-

stricted grammars, combinatory logic, programming languages

4 Decidability

Convention: input < I > is an encoding suitable for putting on the TM tape

ADFA: decides whether a TM can simulate a DFA for an input string; if the simulation ends in one of

the DFA’s accept states, accept; otherwise, reject; the TM can keep track of current state and input

position by storing on tape and using the delta function to update current state and input position

ANFA: decides whether a TM can simulate a NFA for an input string; can convert the NFA to a DFA

and use the TM constructed for the DFA to decide

ARE: decides whether a TM can simulate a RE for an input string; can convert the RE to a DFA and

use the TM constructed for the DFA to decide

EDFA: decides whether a TM can simulate DFA that only accept the empty set

EQDFA: decides whether two DFA are equivalent using < (D1−D2)∪ (D2−D1) > and determining

whether the result is empty (accept), or nonempty (reject)

ACFG: decides whether a TM can simulate a CFG on an input string; convert the CFG into CNF

and determine all derivations in 2∗ | w | −1 steps (unless w is length 0, in which we complete 1

derivation). If any derivation yields w, accept (utilizes CNF theorem)

APDA: convert PDA into CFG to simulate PDA as a CFG above

ECFG decides whether a TM can simulate empty CFGs; mark all terminals and mark non terminals

A such that A→ u1u2...uk such that each ui has already been marked; if the start symbol is marked,

reject; else, accept

5

5 Undecidability

Methodology: use proof by contradiction by assuming a certain problem is first decidable

Rice’s Theorem: and property of a TM equivalent is undecidable

6

