
 Alex Mei | CS154 | Spring 2021 

 CS 154 Notes: Computer Architecture 

 Classes of Computers: 

 -  Personal Computers: general purpose, variety of software [Constraints: costs, battery, size] 

 -  Servers: the cloud; high performance, capacity, and reliability [Constraints: low cost] 

 -  Supercomputers: high-end scientific and engineering calculations [Constraints: highest performance] 

 -  Embedded Computers: hidden as components of systems [Constraints: tiny, zero power, minimal cost] 

 Applications suggest how to improve technology and provide revenue to fund development 

 Improved technologies make new applications possible 

 Cost of software development makes compatibility a major decision market in the market 

 Computer Components:  (1) Processor, (2) Memory, (3)  Input Devices, (4) Output Devices, (5) Data Storage 

 Motherboard Contents:  IO Devices, CPU Chip, Graphics  Chip, Power Connectors, Memory IO Connectors 

 Parts of the CPU: 

 -  Datapath:  ALU, registers, functional units that data  moves through to perform calculations 

 -  Cache Memory:  small, fast memory inside the CPU with  frequently used data 

 -  (Main memory lives outside the CPU on a separate DRAM chip) 

 -  Control Logic:  sequencing how datapath and memory  interact 

 Fetch-Execute Cycle: 

 -  Instruction Fetch (IF):  fetch the next instruction  in the program (from memory) 

 -  Instruction Decode (ID):  the instruction (in control  unit) 

 -  Execution (EX):  Execute the instruction (in the alu) 

 -  Memory (MEM):  access stored data as necessary and  read/write (in memory) 

 -  Write Back (WB):  Write Back results to registers (in  registers) 

 Pipelining in CPUs:  pipelines can make CPUs faster  (but need to prevent data hazards) 

 -  Instruction Level Parallelism:  allow multiple instructions  to go on at once 



 Alex Mei | CS154 | Spring 2021 
 Computer Languages and the FE Cycle: 

 -  CPU executes machine language instructions, which need multiple cycles to run 

 Machine and Assembly Language: 

 -  CPU executes machine level instructions 

 -  Compilers/Interpreters translate higher level languages to lower level languages 

 -  Assembers translate lower level languages into machine language 

 Computer Memory:  <Address: location of data, Data:  the stored data> 

 -  DRAM: dynamic RAM (prices go down with improvement in capacity) 

 Abstraction Layers: 

 Manufacturing Integrated Circuits (ICs):  (1) prepare  wafer, (2) apply photoresist, (3) align photomask, (4) 

 expose to UV light, (5) develop & remove exposed photoresist, (6) etch exposed oxide, (7) remove photoresist 

 Cost of Manufacturing ICs: 

 -  Cost per die = Cost per wafer / (Dies per wafer * yield) 

 -  Dies per wafer ~= Wafer area / Die area (round down) 

 -  Wafer cost and Die area are usually fixed values (area determined by design) 

 -  Yield = good die / total die = 1 / [1 + (Defects per area * Die Area / 2)]  2 



 Alex Mei | CS154 | Spring 2021 
 Metrics: 

 -  Latency:  response time to complete a single fixed task (calculations emphasizes) 

 -  Throughput:  total work done in a fixed time (server emphasizes) 

 Performance Measures: 

 -  Execution Time:  total response time (CPU + External  Memory I/O + OS + idle), which determines overall 

 system performance 

 -  CPU Time:  time spent processing a given job (excludes  I/O, OS times) 

 -  determined by program length, computer architecture, CPU clock speed 

 -  can improve performance by reducing number of clock cycles and increasing clock rate 

 -  has tradeoff between clock rate against cycle count 

 -  not all instructions use the same number of clock cycles 

 -  Performance = 1 / Execution Time 

 -  Relative performance (Speedup) of system A vs B = P  A  / P  B 

 -  Speedup Latency = Latency Old / Latency New 

 -  Speedup Throughput = Throughput New / Throughput Old 

 -  CPU Time = CPU Clock Cycles * Clock Cycle Time = CPU Clock Cycles / Clock Rate 

 -  CPU Time = instructions/program * clock cycles/instruction * seconds/clock cycle 

 -  CPU Time = instruction count * CPI * cycle time 

 CPU Clocking:  hardware operates on a constant-rate  clock 

 -  Clock Period:  duration of a clock cycle 

 -  Clock Frequency (Rate):  cycles per second 

 -  Clock Frequency = 1 / Clock Period 

 Challenge: Power Consumption:  market wants power consumption  to decrease while increasing performance 

 -  Power = Capacitive Load * Voltage  2  * Clock Frequency 

 -  Contributes to Moore’s Law Plateau 

 Challenge: Idle Power:  CPUs draw disproportionate power when idling 



 Alex Mei | CS154 | Spring 2021 
 Challenge: Multiple Processors:  more than 1 processor per chip 

 -  Requires explicit instruction level parallel programming (hidden from programmer) 

 -  Need to maximize performance, balance the load, optimizing communication and synchronization 

 Challenge: Amdahl’s Law:  improve an aspect of a computer and expect a proportional overall improvement 

 -  T  improved  = T  unaffected  + T  affected  / improvement  factor 

 Pitfall: MIPS as a Performance Metric:  MIPS = Millions  of Instructions per second 

 -  Doesn’t account for ISAs between computers (which have different efficiencies) 

 -  Differences in complexities between instructions (weighted CPIs) 

 -  Better to stick to CPU Time per Fixed Process 

 Multiplexer:  M bits N inputs to 1 output 

 -  2:1 Mux: if S == 0, return A, else if S == 1, return B 

 Transpile:  translating source code into another language  with similar level of extraction 

 Hardware Description Language (HDL):  used for simulation 

 Instruction Set Architectures (ISAs):  abstract contract  between software and hardware 

 -  described with programmer-visible states, semantics/syntax and instructions 

 -  can have many different implementations, some of which are customizable 

 Classification of ISAs: 

 -  By complexity: Complex Instruction Set Computer (CISC) vs Reduced Instruction Set Computer (RISC) 

 -  instruction complexity (CPI), transistors, power, commercial vs embedded 

 -  RISC: simply instructions 

 -  CISC: as few lines of code as possible 

 -  By parallelism: Very Long Instruction Word (VLIW) vs Explicit Parallel Instruction Computing (EPIC) 

 -  less commercial, server/supercomputer usage 

 -  By simplification: Minimal Instruction Set Computer (MISC) vs One Instruction Set Computer (OISC) 

 -  proof of concept, little parallelism 



 Alex Mei | CS154 | Spring 2021 
 MIPS ISA:  instructions in either R (register), I (immediate), or J (jumping) format represented with 32 bits 

 -  for immediate instructions, the upper 16 bits is set to 0 

 -  Pseudo Instructions: not core to CPU and are slower to run than core instructions 

 Variables:  have type and storage class 

 -  Automatic variables:  local to part of program; created  and discarded 

 -  Static variables:  global variables 

 -  MIPS uses the global pointer register $gp to access static variable block 

 Memory Layout: 

 -  Text:  program code 

 -  Static data:  global variables 

 -  Heap:  dynamic data (created and destroyed by programmer) 

 -  Heap is in upward direction (bottom of heap is lower memory address) 

 -  Stack and heap grow toward each other 

 -  Stack:  automatic storage of local variables (created  and destroyed by compiler) 

 -  Stores arguments and variables when functions are called 

 -  Stores large local variables that don’t fit in registers 

 -  Stack is in reverse direction (high memory is bottom of stack) 

 Character Data:  byte-encoded character sets 

 -  ASCII:  8 bits, includes all english characters but  not non-English characters 

 -  Unicode  (-8, -16, -32): 8/16/32 minimum number of bits for variable character encoding 

 -  Must be stored in memory (.data directive) and load them from memory (must fill to be 32 bits) 



 Alex Mei | CS154 | Spring 2021 
 String Representations: 

 -  1st Choice: give length of string in the first position 

 -  2nd Choice: accompanying variable for length of string 

 -  3rd Choice: terminating EOS \0 character (C-Strings) 

 Branch Addressing:  16 bit immediate in WORDS 

 -  Immediate types, can add or subtract done relative to PC Register 

 -  Most branch targets are near branch instruction in text segment of memory 

 -  Target Address = PC + 4 * Word Offset 

 -  Note: PC is automatically incremented by 4 when this calculation is done 

 -  Word alignment allows us to jump further with the 16 bit immediate restriction 

 -  If 16 bit offset is too small to encode far branch target, use jump addressing with 26 bit limit 

 Jump Addressing:  26 bit address in WORDS 

 -  Encode full absolute address in instruction, not relative addressing 

 -  Target Address = 4 * Address (in Words) | PC[31:28] 

 -  Get 4 most significant digits from PC (If need to cross boundary, jump and add and jump) 

 -  Concatenate 26 bits in address; Concatenate two zeroes 

 Parallelism and Synchronization using Instructions 

 -  Data Race is processors access same shared area of memory 

 -  Need hardware support for lock and unlock 

 -  Atomic memory operation = no other memory access allowed until atomic operation finished 

 -  Load link (ll) and Store conditional (sc) used in sequence 

 -  Load link make reservation on a certain register 

 -  Store conditional attempts to store at register; returns value in rt (0 = fail, 1 = success) 



 Alex Mei | CS154 | Spring 2021 
 File to Machine Code 

 1.  Compiler:  HLL to Assembly; may have assemblers and linkers built-in 

 2.  Assembler:  take care of pseudo instructions and number conversions (to hex); produces object file 

 (machine language instruction, data, and information needed to place instructions properly in memory) 

 -  must determine addresses of labels and resolve labels for branching/jumping instructions 

 3.  Linker:  combine all object files into executable program, resolving symbols (references) as it goes along; 

 products a single executable file with machine language instructions 

 4.  Loader:  OS program that takes executable code, sets  up CPU memory for it, copies over the instructions 

 to CPU memory, initializes all registers, jumps to the start routine) 

 Note:  since a pointer is a memory address, when we simply add 4 to the address, we don’t need additional 

 instructions for indexing from an array; compilers can optimize code for this. 

 Dynamic Linking:  only finish linking a library procedure  when it is called 

 -  PRO: often used libraries only need to be stored in a single location and not duplicated 

 -  PRO: Update/fixes to library can be done modularly 

 -  PRO: Reduce compiling time 

 -  CON: Newer version of library is not backward compatible 

 Java:  compiled to Java bytecode instruction set; usually  slower than C/C++ 

 -  Run on Java virtual machine regardless of computer architecture 

 -  JVM is a software interpreter that simulates an ISA 

 -  PRO: portability 

 -  Performance can be enhanced with Just in Time compilation 

 Addition and Subtraction Overflow: 

 -  Languages like C/C++, Java ignore overflow. Use unsigned assembly instructions to simulate this. 

 -  Demand on CPU runtime is excessive; we can manually check in such languages. 

 -  When using the signed operations, an exception handler is invoked: 

 -  PC is saved in exception program counter register 

 -  Jump executed to a predefined handler address 



 Alex Mei | CS154 | Spring 2021 

 Multiplication and Division: 

 -  mult multiplies 2 numbers and stores lower 32-bit result in LO and higher 32-bit result in HI 

 -  div divides 2 numbers and stores the result in LO and quotient in HI 

 -  use mflo and mfhi to move out of lo and hi registers 

 -  no checking for overflow or divide by zero 

 Multiplication Algorithm:  for M * N 

 -  Initialize P = 0 

 -  Loop 32 times: 

 -  If bit 0 of N is 1, P += M 

 -  Shift N to the right and M to the left 1 bit 

 -  Return P (product) 

 Division Algorithm:  for N / D 

 -  Initialize R = N 

 -  Loop 32 times: 

 -  R = R - D 

 -  If R >= 0, shift Q to the left one bit and set last signed bit to be 1 

 -  Else, R = R + D and shift Q to the left one bit 

 -  Shift D to the right 1 bit 

 -  Return R (remainder) and Q (quotient) 



 Alex Mei | CS154 | Spring 2021 

 Optimization:  can do addition/shift and subtraction/shift in parallel 

 Floating Point:  representation for non integer numbers,  allowing small and large representations 

 -  normalized in binary scientific notation 

 -  (-1)  S  * (1 + Fraction) * 2  E - B 

 -  32 bits: (31) is sign, (30 - 23) is exponent, and (22 - 0) for fraction; 1 + Fraction = Mantissa 

 -  Overflow occurs when exponent too large and underflow when too small 

 -  Double precision uses 64 bits with 11 bits for exponent and 52 bits for fraction 

 -  Fraction written out as b  1  b  2  … with implicit 1 (b  1  = 0.5) 

 -  E is normal variable and B is constant (127 for single precision and 1023 for double) 

 -  Exponents 0x00 and 0xFF are reserved for single precision numbers 

 -  Zero represented with S = 0/1, E = 0, F = 0 

 -  Pos/Neg Infinity represented with S = 0/1, E = 0xFF, F = 0 

 -  Not a Number represented with S = 0/1, 0xFF, F != 0 

 -  Denormalized numbers represented with S = 0/1, E = 0, F != 0 

 Floating Point Addition: 

 -  Align decimal points by shifting smaller exponent 

 -  Add significands 

 -  Normalize result and check for over/underflow 

 -  Round if necessary 



 Alex Mei | CS154 | Spring 2021 

 - 

 Floating Point Unit: 

 -  Specialized hardware in separate co-processor for floating point arithmetic 

 -  Allows for floating point to integer conversions 

 -  Operations take several cycles that should be pipelined 

 MIPS FP Instructions: 

 FP instructions operate on FP registers (from FPU) at $f0, $f1, … 

 -  Floating point registers can be paired for double precision size 

 -  FP addition takes multiple steps; longer than integer addition 

 -  Operations not available for FP: bitshift, modulo 



 Alex Mei | CS154 | Spring 2021 
 Implementing the Design of a CPU 

 -  CPU Performance Factor: Iron Law 

 -  Instruction Count determined by ISA and Compiler 

 -  CPU and Cycle Time determined by CPU Hardware 

 -  Consider simple subset for run time 

 -  Memory reference: lw, sw 

 -  Arithmetic and logical: add, addi, sub, and, andi, or, slt 

 -  Control transfer: beq, j 

 Instruction Fetch-Execute Cycle: 

 -  Send PC to the memory location is and fetch it; then increment PC to next instruction 

 -  R Type Instructions: 

 -  Read the two register operands rs/rt (outputs contents of register) 

 -  Perform ALU operation (two 32-bit input and 1 32-bit output plus a 1-bit signal if zero) 

 -  Write result to rd (writes on next clock edge) 

 -  Memory Reference Classes: 

 -  Read register operands rs/rt 



 Alex Mei | CS154 | Spring 2021 
 -  Use ALU to find offset memory address for ALU 

 -  Load: Read memory and update register 

 -  Store: write register value to memory (on next clock cycle) 

 -  Branching Classes: 

 -  Read register operands 

 -  Compare operands (use ALU subtract and check ALU output) 

 -  Use ALU to calculate target address 

 -  All these data paths perform one instruction in one clock cycle 

 -  Each datapath element can only do one function at a time 

 -  Use multiplexer when alternate data sources are used 



 Alex Mei | CS154 | Spring 2021 



 Alex Mei | CS154 | Spring 2021 



 Alex Mei | CS154 | Spring 2021 

 Note for subtraction: carry in value must be one 

 Overflow Detection:  check when result of the adder  result in overflow (at the end of the cascade) 

 Another output:  set less than, which sets to 1 when  true (at the end of the cascade) 

 Carry in and Binvert work as same way and can be combined into a single bnegate 

 Subtraction allows equality comparison if zero bit is true 

 Zero gate only returns 1 if all the result bits are 0 (using a NOR gate) 



 Alex Mei | CS154 | Spring 2021 
 ALU Control: 

 -  sufficient information from decoded opcode and funct code from instruction to let ALU select 

 -  ALUOp[1:0] (decode of instruction opcode) combined with Instructions[5:0] (the funct field) provides the 

 ALU_Control[3:0] for ALU functionality 



 Alex Mei | CS154 | Spring 2021 

 Performance Issues: 

 -  latencies in the datapath (ignore the wires); sum of latencies is total latency 

 -  iron clad rule: longest delay determines clock period 

 -  critical path: load instruction (longest delay usually) 

 -  Instruction memory -> register file -> ALU -> data memory -> register file 

 -  not feasible to vary period for different instructions (and complicates design) 

 Pipelining: 

 -  Pipeline speedup = non-pipeline time / pipeline time = stages 

 -  Stages need to be balanced and allotted to 1 single clock cycle 

 -  Speed is faster due to increased throughput, but instruction latency does not change 

 MIPS vs Other Pipelining: 

 -  MIPS (and RISC-types) have simpler ISAs versus CISC-types 

 -  MIPS has same length instructions; x86 has variable length instructions 

 -  MIPS has only 3 instruction formats; x86 has more stages bc more format types 

 -  MIPS only has memory access for load store; x86 have other instructions 

 Pipeline Hazards:  prevent starting the next instruction,  reducing the performance 

 -  Structural hazards:  hardware is busy; cannot changed  in software (Ex: multiplication for multiple cycles) 



 Alex Mei | CS154 | Spring 2021 
 -  Data hazards:  new instruction need to wait for previous to read/write 

 -  Might be able to fix in software (rewrite) or in hardware 

 -  Control hazard:  deciding on action depends on previous  instruction (Ex: branch decisions) 

 -  Fetching next instruction resolves this issue 

 -  Resolution: add hardware to compute target early in ID Branch 

 Forwarding:  don’t wait for a result to be stored in  the register 

 -  Instead, forward the result to a stage that needs in (destination stage later in time than source stage) 

 -  Pipeline Stall/Bubble:  delay start of next instruction  so we can forward to destination stage 

 -  More forwarding = more overhead 

 -  NO OP:  an stub instruction to fill pipeline that is  harmless 

 Code Scheduling:  reorder code to avoid hazards 

 Predict the Branch Solution for Control Hazards: 

 -  if prediction is correct, pipeline is not slowed down 

 -  if prediction is wrong, kill the instruction after fetch and is no worse than original bubble 

 -  Simple Strategy:  predict branches are not taken; only  when branches are taken, then we have a bubble 

 -  Static Predictions:  predict based on typical behavior;  take loops but not branches 

 -  Dynamic Predictions:  hardware measures actual branch  behavior based on record of recent history of 

 each branch like a learning algorithm; assume future behavior will continue the trend 



 Alex Mei | CS154 | Spring 2021 



 Alex Mei | CS154 | Spring 2021 



 Alex Mei | CS154 | Spring 2021 

 Pipeline Summary: 

 -  One logical component can be only used for a single pipeline stage at a time 

 -  Multiclock Cycles Diagram: good for high level overview and details 

 -  Single Clock Cycle Diagram: full details of 5 instructions 



 Alex Mei | CS154 | Spring 2021 

 Forwarding vs Stalling:  can forward data to any stage  that needs it as soon as the write back happens 

 -  Data Hazards Occur When… 

 -  EX/MEM.RegisterRD = ID/EX.RegisterRS 

 -  EX/MEM.RegisterRD = ID/EX.RegisterRT 

 -  MEM/WB.RegisterRD = ID/EX.RegisterRS 

 -  MEM/WB.RegisterRD = ID/EX.RegisterRT 

 -  Check RegWrite control signal for when registers will be written to 

 -  If RS/RT are the zero registers, RD cannot be overridden (even tho it won’t throw an error) 

 -  Note: must stall when read is performed after a load word command writes to a register 



 Alex Mei | CS154 | Spring 2021 

 Double Data Hazard:  if more than one cause a data  hazard, only use the most recent value 

 Hazard Detection for Stalling: 



 Alex Mei | CS154 | Spring 2021 

 How to Stall: 

 -  Force control values in ID/EX to be 0 so that EX, MEM, and WB will do a no-op 

 -  Prevent update of PC and IF/ID register 

 -  current instruction decoded again, following instruction is fetched again 

 -  this cycle allows MEM to read data for lw and then can subsequently forward to EX stage 

 -  For compilers to resolve stalls, they must know the hardware info to fix stalling 

 Branch Types: 

 -  Direct: label has fixed PC; Indirect: label is in register with address 

 -  Unconditional: jump always taken; Conditional: depend on register/immediate values 

 Control Hazards:  want to mitigate latency 

 -  Misprediction gets flushed, rather than an incorrect instruction execution 

 -  Misprediction Penalty  : amount of cycles needed before  branch outcome is determined 

 -  Fixing with compiler with branch delay does not work well due to inaccuracy 

 -  Fixing with compiler using branch hint is also inaccurate 

 Predictions: 

 -  Branch outcome, determined after execute stage 

 -  Branch address, known after decode stage (direct branches) or execute stage (indirect branches) 

 -  Scheme 1: branch not taken by default; if branch taken, flush away (assume flushing is negligible) 

 -  Scheme 1.5: move branch execution earlier in pipeline 

 -  move branch adder from EX stage to the ID stage (or add pre-decode stage) 

 -  evaluate branch decision earlier (harder to do while maintaining short cycle time); need two 

 register reads for equality check using simple gates, but adds more potential hazards 

 -  Scheme 2: based on typical branch behavior (increases to about 70% accuracy) 



 Alex Mei | CS154 | Spring 2021 
 -  Prediction schemes not related to the ISA; part of the microarchitecture implementation 

 -  Dynamic Scheme: create branch history table to store past outcome; given a PC, return past result and 

 assume same outcome happens like last time; update prediction if wrong 

 -  Branch prediction buffer small memory: 1-bit that states take or not take 

 -  Issue: nested loop construct that can result in a sequence of wrong predictions 

 -  Two Bit Predictor: only change prediction after two successive mispredictions 

 Exceptions and Interrupts:  unexpected events that  require change of flow 

 -  Exceptions arise in the CPU (undefined instructions, invalid addresses, overflow, sycall, break instruction, 

 accessing missing coprocessor, floating point exceptions, etc.) 

 -  Interrupts are from external I/O controller (timers, other processors, external devices) 

 -  Dealing with them without sacrificing performance is hard 

 Handling Exceptions/Interrupts:  need to store issues to get back to original location after handling 

 -  Managed by System Control Coprocessor (CPO) 

 -  Set PC value of instruction in the Exception Program Counter (EPC) 

 -  One method: store problem in a status controller 

 -  Other method: vectored interrupt to go to address based on cause of exception 

 -  Actions:  transfer to relevant handler; if restartable,  take corrective action; otherwise, terminate program 

 -  MIPS treats this similar to a control hazard 



 Alex Mei | CS154 | Spring 2021 

 Computer Memory:  programs access only a small portion of their address space at one time 

 -  Temporal locality:  if an item is referenced, it will  tend to be referenced soon again (i.e., loops) 

 -  Spatial locality:  if an item is referenced, neighbors  will tend to be accessed soon (i.e., array access) 

 -  To take advantage of locality, implement a memory hierarchy 

 -  everything stored in secondary storage (HDD/SSD) worst case 

 -  copy recent (and nearby) items to smaller DRAM main memory 

 -  copy more recently accessed (and nearly) items to SRAM cache memory attached to CPU 

 -  cache is levelled with higher level at the top 

 -  block/line = unit of copying (can be multiple words) 

 -  Hit ratio:  accessed data in upper level / accesses  (hits + absences) 

 -  Miss penalty:  time taken to access absent data 

 -  Miss Ratio  = 1 - hit ratio 

 Memory Technology 

 -  Static RAM  (SRAM): most cache rem is SRAM; 0.5ns -  2.5ns; $1000 - $5000 per GB 

 -  Dynamic RAM  (DRAM): not in CPU but on motherboard;  10ns - 20ns; $3 - $20 per GB 

 -  External Storage  (HDD/SSD): secondary; 5 - 10ms; $0.05  GB for HHD; 5 - 100 micros $0.08 per GB SSD 

 Cache Memory:  levels of memory hierarchy closest to  CPU 



 Alex Mei | CS154 | Spring 2021 
 -  Direct Cache Mapping:  each block only has one possible map in the cache 

 -  Scheme: index % blocks (uses lower order bits for indexing) 

 -  Store tags in cache (higher order bits) to reduce storage space 

 -  Add valid bit to confirm whether data is valid (1 = present) 

 -  Temporal locality: new items replace old items if they exist 

 -  Map size must be a power of 2; cache index size is 2  n  blocks; n bits used for caching index 

 -  Block (Data) size is 2  m  words (2  m + 2  bytes) where  m is bits allocated for block offset 

 -  Tag Field is 32 - (n + (m + 2)) 

 -  Total number of bits = 2  n  * (2  m  * 32  + (32 - n -  m - 2) + 1) = 2  n  * (2  m + 5  + 31 - n - m) 

 -  Size of a cache excludes the tag / valid field: 2  m+5 

 Block Size Considerations 

 -  Larger blocks reduce miss rate (practical limit to block / cache size) 

 -  For fixed size cache, larger blocks = fewer blocks = increased miss rate 

 Cache Misses:  stall the CPU pipeline; fetch block  from next level down; complete data access/restart IS fetch 

 -  have both instruction and data caches 

 -  on cache hit, CPU proceeds normally 

 Cache Performance:  reduces idealness of CPU time 

 -  CPU Time = (CPU execution cycles + Memory stall cycles) * Clock cycle 

 -  Memory Stall Cycles = Miss Penalty * Miss Rate * Memory Access Per Program 

 -  Memory Stall Cycles = Miss Penalty * Misses Per Instruction * Instructions Per Program 

 -  Average Memory Access Time  (AMAT) = Hit Time + Miss  Rate * Miss Penalty 

 -  When CPU performance increases, miss penalty become more significant since hardware needs to 

 improve for fetching; decreasing base CPI/increasing clock rate does not fix memory stalls 

 -  Compulsory Miss:  first use of a block 

 -  Capacity Miss:  cache is too small 

 -  Conflict Miss:  collisions due to less than full associativity 



 Alex Mei | CS154 | Spring 2021 
 Multi Level Caches: 

 -  Level 1 primary cache attached to CPU (small, fast) 

 -  Level 2 larger slower but faster than DRAM 

 -  L1 focuses on minimizing hit time for shorter clock cycle; L2 cache focuses on reducing miss penalty 

 Cache Associativity: 

 -  Memory access patterns can cause CPU to repeatedly access addresses to map to the same index 

 -  One location = direct map; Any location = fully associative; N location = set associative 

 -  Fewer index bits used for same cache size 

 -  Data in each cache set is differentiated by tags (tags looked at in parallel) 

 Virtual Machine:  emulation method of a standard software  interface 

 -  A host computer emulates a guest OS and machine resources 

 -  Apps can’t tell they are running in a VM 

 -  Improves isolation of multiple guests, sharing (cloud computing); users are isolated from each other 

 -  A single computer can run several different OSes 

 -  Additional layer of security beyond standard OS 

 -  Computers are fast so virtualization isn’t too expensive 

 Virtual Machine Monitor (VMM)/Hypervisor:  software  that supports VMs 

 -  Maps virtual resources to physical resources (memory, i/o devices, cpus) 

 -  Guest code can run on native machine in user mode 

 -  Allows guest OS to be different from host OS 

 Hypervisor Requirements: 

 -  Guest software should behave on a VM exactly as on native hardware 

 -  Guest software should not be able to change allocation of the real system’s resources directly 

 -  Hypervisor must be at a higher privilege than the guest (subset of instructions for system) 



 Alex Mei | CS154 | Spring 2021 
 Options for Hypervisor:  virtualization has overhead 

 -  When guests access a device, the hypervisor must step in 

 -  Provide illusion of real device is tricky (need to cause exception with every access) 

 -  Can provide fake devices that are easier to map to hypervisor 

 -  Can adopt para-virtualization (API for guests, additional to existing ISA) 

 -  Note:  recursive virtualization is possible with ISA/hardware  support 

 Virtual Memory:  not virtual machines 

 -  Translation:  virtual addresses into physical addresses  by CPU and OS 

 -  Protection:  application permissions to access data  at an address 

 -  Disk Cache:  use main memory as cache of secondary  storage 

 -  Programs share main memory 

 -  Each application gets private virtual address; protected from other programs 

 -  Takes control of memory addressing and lets each application function as it had unlimited memory 

 Memory Pages  : 

 -  Translations stored in page tables, with key = virtual address and value = mapping to physical address 

 -  Takes 4 bytes per data to store, so storing every address would take 4 * 2  32  space 

 -  If we only store words, it still takes the same amount of space as physical memory 

 -  Want large page size large so the page table can be smaller 

 Virtual Addressing:  Virtual Page Number + Offset gets  translated to Physical Page Number + Offset 

 -  Upper portion of address is page number, lower portion is page offset 

 -  Page Size = 2  # of page offset bits 

 -  Does not need 1:1 mapping with physical addresses 

 -  Loading virtual addressed with valid = 0 causes page fault 

 Page Faults: 

 -  page must be fetched from secondary storage (HDD/SSD) 

 -  can take millions of clock cycles; handled by OS code 



 Alex Mei | CS154 | Spring 2021 
 -  want to minimize page fault rates by making pages large enough, optimize organization of memory, 

 involve smart algorithms for retrieval 

 -  page table entries have tags and valid bits too; when valid bit is off, page fault 

 -  usually OS keeps swap space in secondary storage with pages from memory 

 -  OS manages which processes/addresses use each physical space 

 -  If replacements need to be done, some prediction scheme has to be used (like branching) 

 Write Through vs Write Back 

 -  When writing to memory and that memory location is a copy of something further down: 

 -  Write Through  if write to both cached copy and original  place in memory 

 -  Write Back  if writing to only cached memory and doing  rest later 

 -  Dirty Bit:  indicate if data present in the cache/page  was modified (Dirty); for write back only 

 -  To reduce page fault rate, prefer least recently used (LRU) replacement 

 -  Reference/use bit in page table set to 1 on page access 

 -  Periodically cleared to 0 (not used recently) by OS 

 -  Disk writes take million of cycles, write block at once not individual locations 

 Translation-Lookaside Buffer (TLB)  : cache of valid page table entries 

 -  CPU include a special cache of recently used translations (different from instruction/data cache) 

 -  Usually fully associative with 16-128 entries 

 -  TLB reach = # of entries * page size (how much memory can be read without missing) 

 -  TLB meant to make virtual memory access faster 

 -  If TLB too small or too many processes in use, thrashing occurs: frequent TLB misses, new cached page 

 displaces one that will be soon used again, degrade overall performance 

 -  Used before instruction fetch and data load/store since those contain virtual addresses 

 Hierarchical Page Tables:  make structure smaller by  making levels to split it up, but causes multiple accesses 



 Alex Mei | CS154 | Spring 2021 

 - 


