Alex Mei | CS 160 | Spring 2021

CS 160 Notes: Compilers

Compiler: program that translates a program written in one language (source) into another language (target)

reports errors in the source program

should be efficient and apply optimizations since programs must go through compiler

usually translates to a lower level of abstraction

Interpreter: read an executable program and produce the results

C is already compiled

Scheme is typically interpreted

Java is compiled into bytecodes, and then interpreted

Steps of Compilation

1.

Lexical Analysis (Scanning): scan input file to produce stream of tokens; each lexeme (character string)

corresponds to a token

use a set of patterns to specify valid tokens
each pattern specified as a regular expression built as a finite automata
need to get rid of white space and comments

need to print error messages for invalid strings

Syntax Analysis (Parsing): recognize the structure of the program based on context free grammars

apply rules of CFG to produce a parse tree

need to print error messages for invalid strings

Intermediate Representations: connect frontend (understand meaning of program) and backend

(translate to equivalent program) of compilers

step for significant optimization
parse tree representation has too many details (relevant to remove ambiguities)
generate abstract representation from a parse tree with only necessary details

Abstract Syntax Trees (AST): nodes represent operators and children represent operands

Semantic (Context-Sensitive) Analysis: need to check if the semantics make sense

variables declared before they are used, valid variable types on operands with operator

can use symbal table to determine variable declarations and types

Alex Mei | CS 160 | Spring 2021
5. Runtime Environment: create efficient implementation of programming abstractions
6. Code Generation: generate lower level representations (may be still an intermediate representation)
- need to create mappings between source and target code
- improve inefficient code to make assembling code mare efficient

- there are limited number of registers on real machines

Desirable Properties of Compilers:
- generate correct executable code
- output program should be more efficient than the input program (time, energy)
- compiler should be efficient itself
- need good diagnostics for programming errors to aid debugging
- should support separate compilation; should work well with debuggers
- optimizations should be consistent and predictable; when optimizations are applied, they should

improve performance on many of the inputs without degrading performance on other inputs

Why Build Compilers?
- provide interface between applications and architectures
- higher level programming languages provide better productivity, maintenance, and portability

- lower level machine code involves many details from instructions, pipelines, registers, and cache

Lexical Analysis (Scanner): maps stream of character into tokens, discarding white space and comments
- frontend stage of compiler
- only stage that touches every character of source code

- reports errors and correlated information (line number, etc)

Lexical Concepts:
- Token: basic unit of syntax which is the syntactic output of the scanner
- Examples: keywords, operators, identifiers, numbers
- Pattern: rules that describe set of strings that correspond to token

- Lexeme: instance of pattern that matches to token

Alex Mei | CS 160 | Spring 2021

Specifying Lexical Patterns:

Keywords and Operators are easy, match as literal patterns
Identifiers and Numbers are more complex, need to represent using regular expressions (which are

translated into DFAS to accept/reject patterns)

Regular Expressions: describe regular languages

Empty string € is a RE denoted by the set {&}
If a string sisin %, then s is a RE denoted by the set {s}
If x and vy are REs denoting languages L(x) and L(y), then the following operations are closed the class

of REs: union, concatenation, kleene star

Extensions to Regular Expressions

o xt=xx* denotes L(x)*

« X?7=Xx|€ denotes L(x) U {€}

¢« [abc] =a|b]|c matches one character in the square bracket
* az =aj|bjc|..|z range

+ [09a-z]=0|1]|2]..|9]a|b]|c]..|z

+ [*abc] A means negation

. matches any character except a, b orc
« . =[Mn] dot matches any character except the newline
\n means newline so dot is equivalent to [*\n]

- I matches left square bracket, meta-characters in
double quotes become plain characters

« |\ matches left square bracket, meta-character after
backslash becomes plain character

Deterministic Finite Automata (DFA):

Defined by a set of states S, a set of inputs %, a transition function delta: S x ¥ -> S, a start state s,
and a set of final accepting states F

Takes linear time to simulate with respect to input string and 2" space complexity

Want to build scanner using a DFA to minimize time complexity

Hopcroft's Algarithm: find a representative set of non distinguishable states for minimal DFA

Nondeterministic Finite Automata (NFA):

- Thompson's Construction for RE -> NFA: use closure properties

Alex Mei | CS 160 | Spring 2021

- An NFA accepts a string if there exists any path that results in an accepting state

- To turn a NFA into a DFA, we take the power set of the NFA to generate the DFA

- Takes O(x * r) time, with O(r) space complexity

NFA for a

(=)

NFAforal|b

Scanner Construction:

- |dentify all relevant tokens

- Write the RE that expresses each token pattern

- Translate RE to NFA to DFA; optimize the DFA (state minimization algorithms)

- Translate into code

Building Fast Scanners:

- no need to encode transitions in a table

- encode state and actions directly in code (generates ugly, but effective code)

state =s,;

string =¢;

char =get next_char();

while (char = eof) {
state = o(state,char);
string = string + char;

char = get next _char();

/
Iif (state in Final) then

report acceptance,
else
report failure;

Alex Mei | CS 160 | Spring 2021

Limits of Regular Languages: cannot recognize recursive patterns

Parsing: uses context free syntax to build an intermediate representation of our tokenized source program
- Input: sequence of tokens representing the source program

- Output: a parse tree (abstract syntax tree)

Context Free Grammar: a four tuple (terminal symbols, non-terminal symbals, start symbol, production rules)
- Terminal symbols (T): terminating tokens returned by the scanner
- Nonterminal symbols (N): variables substituted during a derivation (denotes sets of substrings)
- Start symbol (S): strings in a grammar is derived from its start symboal
- Production rules (P3: N -> (N u T)*

- £an express recursive nature of most programming languages

Vocabulary:
- Sentence of G: string of terminals in L(G)
- Sentential Form of G: string of non-terminals and terminal from which a sentence of G can be derived
- Derivation: a sequence of applied production rules
- Production: a rule mapping non-terminals to a string of non-terminals and terminals

- Parsing: determining the derivation for a sentence

Derivations:
- Each step has 2 choices: choose a non-terminal to replace or a production rule to apply
- Leftmost Derivation: replace leftmost non-terminal at each step
- Rightmost Derivation: replace rightmost non-terminal at each step

- Both methods of derivation does not reduce the expressiveness

Parse Tree: shows how a sentence is parsed (but no strict ardering)
- root node is the start symbol, leaves are terminal symbols, internal nodes are non-terminals

- for each parent node in the tree and its children, there is a corresponding production rule

Alex Mei | CS 160 | Spring 2021
Ambiguous Grammars:
- can be generated non uniguely using the derivation technigue
- must ensure our grammar is unambiguous (no sentence has 2 parse trees)
- 0dd precedence by creating a non-terminal for each level of precedence

- have higher precedence generated from the right to enforce left associativity

Top Down Parsers: (LL(1), Recursive Descent Parsers)
- Start at the root of the parse tree from the start symbol and grow toward leaves (similar to derivation)
- Pick a production rule and try to match the input
- Need to backtrack if a bad production rule is picked

- Some grammars are backtrack-free (Predictive Parsing)

Top Down Parsing Algorithm
- Construct root node of parse tree, label with start symbol, and set current node to root node
- Repeat the following until all the input is consumed (frontier of parse tree matches input string)
- If the label of the current node is a non-terminal node A, select a production with A on its LHS
and for each symbal on the RHS, construct the appropriate child
- If the current node is a terminating symbol,
- If it matches input string, consume it (advance to next input pointer)
- If it does not match the input string, backtrack
- Set the current node to the next node in the frontier of the parse tree
- If there is node node left in the frontier of the parse tree and the input is not consumed,
backtrack
- Key step is picking correct production rule, guided by the input string
- Note: Backtracking algorithm not efficient, using Predictive/LL Parser

- Note: Choosing excess production (left recursion) would result in @ nontermination problem

Alex Mei | CS 160 | Spring 2021

Left Recursion:
- Top-down parsers cannot handle left-recursive grammars
- Left recursive: non terminal A creates a derivation A a for some string a in (NT u T)*

- Recursion must be right recursion (can turn left recursive to equivalent right recursive grammar

Eliminating Left Recursion:
- Immediate recursion can be eliminated trivially
- For nonimmediate recursion, follow this algorithm:
- Arrange NTs in some order A, A,, ..., A,
- Foriinrange(1, n+1), forjin range(l, i)
- replace each production A;-> A Y with A-> 0, Y 18, Y 1..18, Y
- where A;-> 9,19, .. 198, are the production rules of A,
- Eliminate immediate recursion rules trivially

- Ensures no inner loop because we delete production in correct arder, which turns into self loops

Picking the Right Production:
- In general, need Cocke-Younger, Kasami, or Earley's algorithm which is 0(x®)

- Some special subcases can look ahead in linear complexity

Predicting Parsing:

- Basic idea: given A -> a | B, the parser should be able to choose a or 3 based on peeking at the next

taken in the stream

- FIRST sets: define FIRST(a) as the set of tokens that appear as the first terminal symbol in some string

that derives from a.

- Must find all tokens that can be at the beginning of a string that is derived from a

- LL(M Property: if A->a and A -> 3 bath appear in the grammar, we would like FIRST(a) and FIRST(P) to

be disjoint. This allows the look ahead of exactly one symbal.

Alex Mei | CS 160 | Spring 2021
Left Factoring:
- For grammars without LL(1) property, we need to apply the left-factoring algorithm
- Algorithm: For all nonterminals A, find the longest prefix a that occurs in two possible productions of A

- If a is nonempty, then we want to extract a by adding an intermediate production

Recursive Descent Parsing:
- top down parsing method (descent downward)
- Use a set of mutually recursive procedures (one procedure for each non terminal symbol)
- Start parsing process by calling procedure that corresponds with start symbol
- Each production becomes one clause in procedure

- Predictive parsing is a special type of recursive descent using a look-ahead symbol

FIRST Sets:
- Set of all terminals we could possibly see when starting to parse S
- We need look-ahead token to tell us with 100% confidence which production rule to apply
- Anytime we have a production rule like A -> a | 3, we need to make sure FIRST(a]) is distinct from

FIRST(P)

Computing FIRST Sets: for FIRST(X)...

- Set of tokens that appear as the first symbal in some string that derives from a

- If X'is a terminal, return X

- If Xis a non-terminal and X -> € is a production, include €

- If Xis a non-terminal and X -> t is a production where t is terminal, include t

- If X'is a non-terminal and X -> Y, | ... I Y, is a production where Y, is a non-terminal, include all FIRST(Y))
If X is a non-terminal and X -> Y, ... Y,is a production where Y, is a non-terminal, include FIRST(Y,)
except €

- feinally, forall i <=j, include FIRST(Y)

- Afeinall Y, forall i <=k include €

Alex Mei | CS 160 | Spring 2021
Epsilon in FIRST Sets:
- Want to make sure epsilon not in FIRST Set

- Otherwise, must compute FOLLOW Set which is the set of characters that follow the first non-terminal

FOLLOW Sets: for FOLLOW(A)
- Set of all terminals that could appear immediately after non-terminal A
- Put $in FOLLOW(S) where $ is EOF symbol
- If there is a production A -> a B 8, then include everything in FIRST(B) except €
- If e in FIRST(B) then put everything in FOLLOW(A) in FOLLOW(B)
- If there is a production A -> a B, then put everything in FOLLOW(A) in FOLLOW(B)

LL(1) Grammars: |eft to right scan, leftmost derivation, 1 token-look ahead
- productions are uniguely predictable with a single token look ahead
- use recursive descent parser to implement LL(1) grammar, using look ahead symbol to determine
production
- when no element in FIRST set matches, check the FOLLOW set
- if look-ahead symbol is in FOLLOW set and there is an epsilon production, choose that

- otherwise, terminate with parsing error

Stack-Based Table Driven Parsing:
- Two dimensional array with M[A, a] giving a production, A being a nonterminal and A being a terminal

- If the top of the stack is A and the look-ahead symbol is a, we can apply M[A, dl

LL(1) Parse Table Construction:
- For all productions A -> q,
- For each terminal symbol a in FIRST(a), add A -> a to M[A, a]
- If £in FIRST(a), then for each terminal symbol b in FOLLOW(A), add A -> a to M[A, b]

- Set undefined entries in M to ERROR

Alex Mei | CS 160 | Spring 2021

Top Down Parsing Recap:

Simple to construct by hand

- Intuitive way to reason about parsing
- Predictive parsing is fast

- Really messy for complex grammars

- Does not handle left recursion nicely (becomes restrictive)

Bottom Up Parsers (LR(1), Shift-Reduce Parsers)
- Start at the leaves and grow toward the root
- Reducing input string to start symbaol
- At each reduction step, a particular substring matching the right side of a production is replaced by the
symbol on the left side of the production
- Bottom-up handle a larger class of grammars
- Only builds a small part a tree

- Can handle left-recursive grammars without modification

LL(Kk) has complete left context and the k terminals

LR(K) has complete left context, the reducible phrase, and the k terminals

How Bottom Up Parsing Works:
- find the rightmost derivations of a sentence by running productions backwards from sentence to the
start symbol
- figure out what leads to w, then replace w with Y, then, figure out what leads to Y, and with Y,
continue until we reach the start symbol
- To derive Y, fram Y, by using production a -> 3, match 3 against Y, and then replace with a
- Nodes with no parent in a partial tree form its upper fringe

- Reduction: replace 3 with a to shrink the upper fringe

Alex Mei | CS 160 | Spring 2021
Handles and Reductions:
- Handle: substring B of a tree's fringe that matches some production a -> 3 in one step

- Does not need to scan past the handle (only a look ahead)

Shift-Reducing Parsing:
- Shift; eat input terminals and move them onto stack
- Reduce: apply some production in reverse
- Accept: stop parsing and report success

- FError: can an error reporting or recovery routine

LR Parsers:
- fast, and simple to implement
- need push down automata to handle recursive nature of grammar and recognize strings

- need pushdown automata in the form of o table to determine how to deal with handles

Handle Recognizing Machine:
- put special placeholder token to mark how far we went along the production

- build NFA, turn into DFA, then build ACTION GOTO table

ACTION GOTO Table: rows as states inputs as columns (Actions = Terminals; Goto = Non Terminals)
- Action: SX means shift and add X to the top of the stack
- Action: RX means reduce by production X
- Goto: shows the state to go after pushing left side symbol
- A means accept; empty square is an error

- LR(0): If action table has S/R conflict, must rewrite grammar to remove conflict

When to Reduce LR(0):
- If there is a dot at the end of the RHS, we can apply a reduction rule
- There may be reduce-reduce conflicts with 2 reductions using same character

- There may be shift-reduce conflict, but the solution should be to prefer shift

Alex Mei | CS 160 | Spring 2021
LR Parser Tables
- SLR, LALR, and LR(K) are different ways of automatically generating a state machine to capture
handles encoded into the form of a table, Strings are recognized from a star.
- Action table tells shift/reduce/accept/throw error for terminals

- Goto table tells how to update the state on a reduce action

