
 Alex Mei | CS 160 | Spring 2021

 CS 160 Notes: Compilers

 Compiler: program that translates a program written in one language (source) into another language (target)

 - reports errors in the source program

 - should be efficient and apply optimizations since programs must go through compiler

 - usually translates to a lower level of abstraction

 Interpreter: read an executable program and produce the results

 - C is already compiled

 - Scheme is typically interpreted

 - Java is compiled into bytecodes, and then interpreted

 Steps of Compilation

 1. Lexical Analysis (Scanning): scan input file to produce stream of tokens; each lexeme (character string)

 corresponds to a token

 - use a set of patterns to specify valid tokens

 - each pattern specified as a regular expression built as a finite automata

 - need to get rid of white space and comments

 - need to print error messages for invalid strings

 2. Syntax Analysis (Parsing): recognize the structure of the program based on context free grammars

 - apply rules of CFG to produce a parse tree

 - need to print error messages for invalid strings

 3. Intermediate Representations: connect frontend (understand meaning of program) and backend

 (translate to equivalent program) of compilers

 - step for significant optimization

 - parse tree representation has too many details (relevant to remove ambiguities)

 - generate abstract representation from a parse tree with only necessary details

 - Abstract Syntax Trees (AST): nodes represent operators and children represent operands

 4. Semantic (Context-Sensitive) Analysis: need to check if the semantics make sense

 - variables declared before they are used, valid variable types on operands with operator

 - can use symbol table to determine variable declarations and types

 Alex Mei | CS 160 | Spring 2021

 5. Runtime Environment: create efficient implementation of programming abstractions

 6. Code Generation: generate lower level representations (may be still an intermediate representation)

 - need to create mappings between source and target code

 - improve inefficient code to make assembling code more efficient

 - there are limited number of registers on real machines

 Desirable Properties of Compilers:

 - generate correct executable code

 - output program should be more efficient than the input program (time, energy)

 - compiler should be efficient itself

 - need good diagnostics for programming errors to aid debugging

 - should support separate compilation; should work well with debuggers

 - optimizations should be consistent and predictable; when optimizations are applied, they should

 improve performance on many of the inputs without degrading performance on other inputs

 Why Build Compilers?

 - provide interface between applications and architectures

 - higher level programming languages provide better productivity, maintenance, and portability

 - lower level machine code involves many details from instructions, pipelines, registers, and cache

 Lexical Analysis (Scanner): maps stream of character into tokens, discarding white space and comments

 - frontend stage of compiler

 - only stage that touches every character of source code

 - reports errors and correlated information (line number, etc)

 Lexical Concepts:

 - Token: basic unit of syntax which is the syntactic output of the scanner

 - Examples: keywords, operators, identifiers, numbers

 - Pattern: rules that describe set of strings that correspond to token

 - Lexeme: instance of pattern that matches to token

 Alex Mei | CS 160 | Spring 2021

 Specifying Lexical Patterns:

 - Keywords and Operators are easy, match as literal patterns

 - Identifiers and Numbers are more complex, need to represent using regular expressions (which are

 translated into DFAs to accept/reject patterns)

 Regular Expressions: describe regular languages

 - Empty string ε is a RE denoted by the set {ε}

 - If a string s is in Σ, then s is a RE denoted by the set {s}

 - If x and y are REs denoting languages L(x) and L(y), then the following operations are closed the class

 of REs: union, concatenation, kleene star

 Deterministic Finite Automata (DFA):

 - Defined by a set of states S, a set of inputs Σ, a transition function delta : S x Σ -> S, a start state s 0,

 and a set of final accepting states F

 - Takes linear time to simulate with respect to input string and 2 r space complexity

 - Want to build scanner using a DFA to minimize time complexity

 - Hopcroft’s Algorithm: find a representative set of non distinguishable states for minimal DFA

 Alex Mei | CS 160 | Spring 2021

 Nondeterministic Finite Automata (NFA):

 - Thompson’s Construction for RE -> NFA: use closure properties

 - An NFA accepts a string if there exists any path that results in an accepting state

 - To turn a NFA into a DFA, we take the power set of the NFA to generate the DFA

 - Takes O(x * r) time, with O(r) space complexity

 Scanner Construction:

 - Identify all relevant tokens

 - Write the RE that expresses each token pattern

 - Translate RE to NFA to DFA; optimize the DFA (state minimization algorithms)

 - Translate into code

 Building Fast Scanners:

 - no need to encode transitions in a table

 - encode state and actions directly in code (generates ugly, but effective code)

 Alex Mei | CS 160 | Spring 2021

 Limits of Regular Languages: cannot recognize recursive patterns

 Parsing: uses context free syntax to build an intermediate representation of our tokenized source program

 - Input: sequence of tokens representing the source program

 - Output: a parse tree (abstract syntax tree)

 Context Free Grammar: a four tuple (terminal symbols, non-terminal symbols, start symbol, production rules)

 - Terminal symbols (T): terminating tokens returned by the scanner

 - Nonterminal symbols (N): variables substituted during a derivation (denotes sets of substrings)

 - Start symbol (S): strings in a grammar is derived from its start symbol

 - Production rules (P): N -> (N ∪ T)*

 - can express recursive nature of most programming languages

 Vocabulary:

 - Sentence of G: string of terminals in L(G)

 - Sentential Form of G: string of non-terminals and terminal from which a sentence of G can be derived

 - Derivation: a sequence of applied production rules

 - Production: a rule mapping non-terminals to a string of non-terminals and terminals

 - Parsing: determining the derivation for a sentence

 Derivations:

 - Each step has 2 choices: choose a non-terminal to replace or a production rule to apply

 - Leftmost Derivation: replace leftmost non-terminal at each step

 - Rightmost Derivation: replace rightmost non-terminal at each step

 - Both methods of derivation does not reduce the expressiveness

 Parse Tree: shows how a sentence is parsed (but no strict ordering)

 - root node is the start symbol, leaves are terminal symbols, internal nodes are non-terminals

 - for each parent node in the tree and its children, there is a corresponding production rule

 Alex Mei | CS 160 | Spring 2021

 Ambiguous Grammars:

 - can be generated non uniquely using the derivation technique

 - must ensure our grammar is unambiguous (no sentence has 2 parse trees)

 - add precedence by creating a non-terminal for each level of precedence

 - have higher precedence generated from the right to enforce left associativity

 Top Down Parsers: (LL(1), Recursive Descent Parsers)

 - Start at the root of the parse tree from the start symbol and grow toward leaves (similar to derivation)

 - Pick a production rule and try to match the input

 - Need to backtrack if a bad production rule is picked

 - Some grammars are backtrack-free (Predictive Parsing)

 Top Down Parsing Algorithm

 - Construct root node of parse tree, label with start symbol, and set current node to root node

 - Repeat the following until all the input is consumed (frontier of parse tree matches input string)

 - If the label of the current node is a non-terminal node A, select a production with A on its LHS

 and for each symbol on the RHS, construct the appropriate child

 - If the current node is a terminating symbol,

 - If it matches input string, consume it (advance to next input pointer)

 - If it does not match the input string, backtrack

 - Set the current node to the next node in the frontier of the parse tree

 - If there is node node left in the frontier of the parse tree and the input is not consumed,

 backtrack

 - Key step is picking correct production rule, guided by the input string

 - Note: Backtracking algorithm not efficient, using Predictive/LL Parser

 - Note: Choosing excess production (left recursion) would result in a nontermination problem

 Alex Mei | CS 160 | Spring 2021

 Left Recursion:

 - Top-down parsers cannot handle left-recursive grammars

 - Left recursive: non terminal A creates a derivation A ɑ for some string ɑ in (NT ∪ T)*

 - Recursion must be right recursion (can turn left recursive to equivalent right recursive grammar

 Eliminating Left Recursion:

 - Immediate recursion can be eliminated trivially

 - For nonimmediate recursion, follow this algorithm:

 - Arrange NTs in some order A 1 , A 2 , …, A n

 - For i in range(1, n+1), for j in range(1, i):

 - replace each production A i -> A j Ɣ with A i -> δ 1 Ɣ | δ 2 Ɣ | … | δ n Ɣ

 - where A j -> δ 1 | δ 2 | … | δ n are the production rules of A j

 - Eliminate immediate recursion rules trivially

 - Ensures no inner loop because we delete production in correct order, which turns into self loops

 Picking the Right Production:

 - In general, need Cocke-Younger, Kasami, or Earley’s algorithm which is O(x 3)

 - Some special subcases can look ahead in linear complexity

 Predicting Parsing:

 - Basic idea: given A -> ɑ | β, the parser should be able to choose ɑ or β based on peeking at the next

 token in the stream

 - FIRST sets: define FIRST(ɑ) as the set of tokens that appear as the first terminal symbol in some string

 that derives from ɑ.

 - Must find all tokens that can be at the beginning of a string that is derived from ɑ

 - LL(1) Property: if A -> ɑ and A -> β both appear in the grammar, we would like FIRST(ɑ) and FIRST(β) to

 be disjoint. This allows the look ahead of exactly one symbol.

 Alex Mei | CS 160 | Spring 2021

 Left Factoring:

 - For grammars without LL(1) property, we need to apply the left-factoring algorithm

 - Algorithm: For all nonterminals A, find the longest prefix ɑ that occurs in two possible productions of A

 - If ɑ is nonempty, then we want to extract ɑ by adding an intermediate production

 Recursive Descent Parsing:

 - top down parsing method (descent downward)

 - Use a set of mutually recursive procedures (one procedure for each non terminal symbol)

 - Start parsing process by calling procedure that corresponds with start symbol

 - Each production becomes one clause in procedure

 - Predictive parsing is a special type of recursive descent using a look-ahead symbol

 FIRST Sets:

 - Set of all terminals we could possibly see when starting to parse S

 - We need look-ahead token to tell us with 100% confidence which production rule to apply

 - Anytime we have a production rule like A -> ɑ | β, we need to make sure FIRST(ɑ) is distinct from

 FIRST(β)

 Computing FIRST Sets: for FIRST(X)...

 - Set of tokens that appear as the first symbol in some string that derives from ɑ

 - If X is a terminal, return X

 - If X is a non-terminal and X -> ε is a production, include ε

 - If X is a non-terminal and X -> t is a production where t is terminal, include t

 - If X is a non-terminal and X -> Y 1 | … | Y k is a production where Y i is a non-terminal, include all FIRST(Y i)

 If X is a non-terminal and X -> Y 1 … Y k is a production where Y i is a non-terminal, include FIRST(Y 1)

 except ε

 - If ε in all Y i for all i <= j, include FIRST(Y i)

 - If ε in all Y i for all i <= k, include ε

 Alex Mei | CS 160 | Spring 2021

 Epsilon in FIRST Sets:

 - Want to make sure epsilon not in FIRST Set

 - Otherwise, must compute FOLLOW Set which is the set of characters that follow the first non-terminal

 FOLLOW Sets: for FOLLOW(A)

 - Set of all terminals that could appear immediately after non-terminal A

 - Put $ in FOLLOW(S) where $ is EOF symbol

 - If there is a production A -> ɑ B β, then include everything in FIRST(B) except ε

 - If ε in FIRST(β) then put everything in FOLLOW(A) in FOLLOW(B)

 - If there is a production A -> ɑ B, then put everything in FOLLOW(A) in FOLLOW(B)

 LL(1) Grammars: left to right scan, leftmost derivation, 1 token-look ahead

 - productions are uniquely predictable with a single token look ahead

 - use recursive descent parser to implement LL(1) grammar, using look ahead symbol to determine

 production

 - when no element in FIRST set matches, check the FOLLOW set

 - if look-ahead symbol is in FOLLOW set and there is an epsilon production, choose that

 - otherwise, terminate with parsing error

 Stack-Based Table Driven Parsing:

 - Two dimensional array with M[A, a] giving a production, A being a nonterminal and A being a terminal

 - If the top of the stack is A and the look-ahead symbol is a, we can apply M[A, a]

 LL(1) Parse Table Construction:

 - For all productions A -> ɑ,

 - For each terminal symbol a in FIRST(ɑ), add A -> ɑ to M[A, a]

 - If ε in FIRST(ɑ), then for each terminal symbol b in FOLLOW(A), add A -> ɑ to M[A, b]

 - Set undefined entries in M to ERROR

 Alex Mei | CS 160 | Spring 2021

 Top Down Parsing Recap:

 - Simple to construct by hand

 - Intuitive way to reason about parsing

 - Predictive parsing is fast

 - Really messy for complex grammars

 - Does not handle left recursion nicely (becomes restrictive)

 Bottom Up Parsers (LR(1), Shift-Reduce Parsers)

 - Start at the leaves and grow toward the root

 - Reducing input string to start symbol

 - At each reduction step, a particular substring matching the right side of a production is replaced by the

 symbol on the left side of the production

 - Bottom-up handle a larger class of grammars

 - Only builds a small part a tree

 - Can handle left-recursive grammars without modification

 LL(k) has complete left context and the k terminals

 LR(k) has complete left context, the reducible phrase, and the k terminals

 How Bottom Up Parsing Works:

 - find the rightmost derivations of a sentence by running productions backwards from sentence to the

 start symbol

 - figure out what leads to w, then replace w with Ɣ n ; then, figure out what leads to Ɣ n and with Ɣ n-1 ;

 continue until we reach the start symbol

 - To derive Ɣ i-1 from Ɣ i by using production ɑ -> β, match β against Ɣ i and then replace β with ɑ

 - Nodes with no parent in a partial tree form its upper fringe

 - Reduction: replace β with ɑ to shrink the upper fringe

 Alex Mei | CS 160 | Spring 2021

 Handles and Reductions:

 - Handle: substring β of a tree’s fringe that matches some production ɑ -> β in one step

 - Does not need to scan past the handle (only a look ahead)

 Shift-Reducing Parsing:

 - Shift: eat input terminals and move them onto stack

 - Reduce: apply some production in reverse

 - Accept: stop parsing and report success

 - Error: can an error reporting or recovery routine

 LR Parsers:

 - fast, and simple to implement

 - need push down automata to handle recursive nature of grammar and recognize strings

 - need pushdown automata in the form of a table to determine how to deal with handles

 Handle Recognizing Machine:

 - put special placeholder token to mark how far we went along the production

 - build NFA, turn into DFA, then build ACTION GOTO table

 ACTION GOTO Table: rows as states inputs as columns (Actions = Terminals; Goto = Non Terminals)

 - Action: SX means shift and add X to the top of the stack

 - Action: RX means reduce by production X

 - Goto: shows the state to go after pushing left side symbol

 - A means accept; empty square is an error

 - LR(0): If action table has S/R conflict, must rewrite grammar to remove conflict

 When to Reduce LR(0):

 - If there is a dot at the end of the RHS, we can apply a reduction rule

 - There may be reduce-reduce conflicts with 2 reductions using same character

 - There may be shift-reduce conflict, but the solution should be to prefer shift

 Alex Mei | CS 160 | Spring 2021

 LR Parser Tables

 - SLR, LALR, and LR(K) are different ways of automatically generating a state machine to capture

 handles encoded into the form of a table. Strings are recognized from a star.

 - Action table tells shift/reduce/accept/throw error for terminals

 - Goto table tells how to update the state on a reduce action

