Alex Mei | CS 24 | Winter 2020

CS 24 Notes: Intro to Data Structures

Chapter 1: Phases of Software Development
Specification: precise description of the problem
Order: the run time of an algorithm expressed in Big-0
Big-0:
- constants are ignored
- the dominant term is the asymptotic run time (term with fastest growth rate
Fully Exercising Code: test code that executes every line of code at least once and code that should be skipped should

be tested to make sure the code is actually skipped

Chapter 2: Classes and Abstract Data Types
Class Example:
class ObjectName {
private:
// Member Variables
public:
//Member Mutator Functions
//Const Accessor Functions
%
Instance: a variable of object type which keeps its own copies of member variables

Constructor: a member function which is called upon declaration of an instance

no parenthesis follow an instance if the constructor takes no parameters

the constructor must have the same name as the class

does not have a return type and cannot put “void” in the constructor definition

can have numerous constructors, each taking a different set of arguments

Default Constructor: a constructor with no arguments

Automatic Default Constructor: a constructor which calls only the default constructors of its member variables

Inline Member Function: a function definition inside of the class, which substitutes the function call with said definition

of code to enhance run time



Alex Mei | CS 24 | Winter 2020

Namespace: a name used to localize portions of code to prevent accidental overloading by naming conflicts (defined in
both the header and the class implementation file)
Namespace Example:
namespace namef{

\\CODE BLOCK
3
Global Namespace: items not defined in a specific namespace; can be used without a scope resolution operator
Unnamed Namespace: items that are defined to be local to that namespace
Header File: a file with the extension “h” that provides class and function definitions, which is enough information a
programmer needs to use such class
Header File Comment: comments regarding preconditions, postconditions, and other relevant information a
programmer needs to use such a class (inline member definitions do not need to be interpreted)
Macro Guard: guard to prevent header files to be included multiple times (written in the header file)
Macro Guard Example:
#ifndef FILENAME_H
#def FILENAME_H
namespace namef{

\\Class Declaration
3
#endif
Value Semantics: determines how values of an object is copied to another
Assignment Operator: x = y; copies the values of y to the variable x
Automatic Assignment Operator: the member variables of y are copied to x for its member variables
Copy Constructor: objectType newVar(orgVar); objectType newVar = orgVar; initializes newVar as a copy of orgVar
Automatic Copy Constructor: initializes a new object by copying all the member variables
Implementation File: a file containing function and class implementations which the programmer should not have to
understand

- Include all header files using #include “filename.h”

Default Argument: a value used for an argument when the argument is not provided (specified only in the
specification file)

Formal Parameter: the parameter of a function



Alex Mei | CS 24 | Winter 2020

Argument: value passed into a function
Binary Function: function with two arguments
Operator Overloading: defining a new meaning for a defined operator (op) using the “operator” keyword
Operator Overloading Example:
returnlype operator op(argl, arg2){
\\CODE BLOCK
}
Friend Function: a function preceded by keyword “friend” declared within a class to give access to its member variables

even though the function is not a member function

Chapter 3: Container Classes

Container Class: a class where each object contains a collection of items

std::size t: an unsigned integer type

Static: every instance object of a class uses that same value (the variable is preceded by the “static” keyword)
- allows use of the scope resolution operator to determine the value since it is the same for all objects
- static should not be declared in an implementation file

Invariant of the Class: rules that dictate how the member variables of a class represent a value or object

Assertions: use public member functions instead of private member variables to maintain concept of abstraction

Chapter 4: Pointers and Dynamic Arrays
bad_alloc Exception: exception that arises from failure to allocate memory using the keyword “new”
Arrays: an array variable is a pointer to the first element of the array
Const Pointers: a pointer preceded by the keyword “const” means the value the pointer points to cannot be changed
by dereferencing the pointer
Dynamic Data Structure: a data structure whose size is determined while running and not compile time
Deep Copy: making a copy of dynamic variables using the non-default constructors/operators because the object
should be copied, not only the memory address
Dynamic Classes: a classes that uses dynamic memory
- automatic operators, copy constructor, and destructor need to be overridden

Return Location: the copy of the local variable when the function returns and the local variable is destroyed



Alex Mei | CS 24 | Winter 2020

Destructor: a member function which is called to deallocate heap memory
- no parenthesis follow an instance if the constructor takes no parameters
- the constructor must have the same name as the class preceded by a tilde
- does not have a return type and cannot put “void” in the constructor definition

- rarely called explicitly since automatically called when objects become inaccessible

Chapter 5: Linked Lists
- return types can be const to prevent accidental pointer manipulation errors

- arrays are better at random access; linked lists are better with inserting and deleting at the head

Chapter 6: Templates and Iterators
Templates: functions and classes which can be used with different data types
Iterator: an item which iterates through all items in a container
Item: a name of the underlying data type of a template; when a template function or class is used, the compiler will
determine the type of Item; an Item is an example of a template parameter

- Non template parameters must match exact type (const size t vs int vs size )
Template Prefix: “template <class Item>" tells the compiler that the following definition uses an unspecified data type
Template Function Example:
template <class Iltem>
returnType functionName(args){

//CODE block;

3
Instantiation: An instantiation of a template function or class is a use of the template function with a specific data type
Unification Error: failure for compiler to determine how to instantiate a template function or class; template
parameters must appear in the parameter list of the template function
Template Classes:

- must still have template prefix for each function that uses template parameters/return types

- must be implemented in the header file; (include the implementation at the end of header instead of top of

implementation file)
- must use keyword “typename” outside of member functions and class definition to reference the class's types

- Ex:typeName className<InstantiatedType>:type



Alex Mei | CS 24 | Winter 2020

Output Iterators: an iterator to put elements into a result container
Input Iterators: an iterator to be dereferenced and access elements
Forward Iterator: must satisfy the following properties
- has default constructor, copy constructor, and assignment operator
- canactas input iterator
- ++operator can iterate the iterator to the next item
- can be tested for equality (if current items are in the same position, then true)
Bidirectional Iterator: a forward iterator which can move backward with the -- operator
Random Access: quickly access a randomly selected location in a container
Random Access Iterator: has additional operators that work in addition to the bidirectional iterator, including pln]
accesses the nth element ahead of the current element (different from array iterators)
Reference Return Types: prevents returning of local variables; function returns the actual variable or object instead of
a copy of the objects (assignment can be made to the function return value now)
- assigning the value to a variable will still make a copy to the new variable
- cannot be used as a constant member function
Note: prefix ++ operator is more efficient than postfix ++ operator since the ladder makes a copy even if the return value

is never used

Chapter 7: Stacks

Stacks: data structure with ordered entries such that the entries can be inserted and removed only at one end (the top)
Last In First Out: Entries are taken out of the stack in the reverse order of their insertion

Stack Underflow Error: Pop Empty Stack

Stack Overflow Error: Push onto a Full Stack

Koenig Lookup: use of arguments to determine which functions to use

Infix Notation: Arithmetic Operator in between Operands (Ex. 2 + 3 = 5)

(Polish) Prefix Notation: Arithmetic Operator Precedes Operands (Ex. + 23 = 5)

(Polish) Postfix Notation: Arithmetic Operator Proceeds Operands (Ex. 2 3 + = 5)

Chapter 8: Queuves
Queue: data structure with ordered entries such that entries can only be inserted at one end (the rear) and removed at

the other end (the front).



First in First Out: Entries are taken out of the queue in the same order as insertion

Queue Overflow: pushing into full queue

Queue Underflow: popping out of empty queue

Circular Array: array that connects last element to first by using modulo

Alex Mei | CS 24 | Winter 2020

Deque: Double-ended queue in which entries can be inserted and removed from both ends

Chapter 9: Recursion

Activation Record: place where function execution is stored while a different function is called and until that is

returned since function stops execution until the inside function is finished executing

Run Time Stack: collection of activation records

Fractal: an object which looks the same after magnified

Chapter 10: Trees
Tree: has a finite set of nodes
- one special node: the root
- each node may have 1 or more children
- each node must have 1 parent unless it's the root
- by moving upward, you will eventually reach the root
Empty Tree: a tree with zero nodes
Node: consists of a datum, left child, and a right child
Root: the top node of a tree
Left Child: the node linked on the left
Right Child: the node linked on the right
Leaf: node with no children

Parent: the node in which a child was linked from

Siblings: two nodes are siblings if they come from the same parent
Ancestor: A node’s parent (or parent of a node’s parents, etc.)

Descendant: A child of a node (or child of a node’s child, etc..)

Left Subtree: a tree beginning with a node’s left child
Right Subtree: a tree beginning with a node’s right child

Depth of a Node: the number of node it takes to reach the root (with the root having a depth of ©)



Alex Mei | CS 24 | Winter 2020

Depth of a Tree: maximum number of nodes it takes to reach the root
Full Binary Tree: every leaf has the same depth and every non leaf has 2 children
Complete Binary Tree: a full binary tree with added nodes that are as left most as possible
A binary tree can be represented using an array with the following formulas:
- Parent = floor((i-1)/2)
- Left Child = 2i +1
- Right Child = 2i+2
Preorder Traversal: root is processed prior to processing the left, then the right subtree
Inorder Traversal: left subtree is processed, then the root, then the right subtree
Postorder Traversal: left, then right subtrees, then the root is processed
Functions can be passed as parameters:
Ex: returnType functionNamel(returnTypeOffunctionParameter functionParemeter(itsParameters), datalype parameter)
Binary Search Trees: the datum of a node is never less than one of the datums in its left subtree and never greater

than one of the datums in its right subtree

Chapter 11: Balanced Trees

Heaps: binary tree with an overloaded less-than operator for comparison
- max-heaps have parents greater than their children
- trees are a complete binary tree

Priority Queue: queue with relative priorities of each item in the queue
- implemented using a max heap

B-Trees: tree to prevent linked list configuration

root can have as few as one entry

- every other node will have at least a MINIMUM number of entries and at most double the MINIMUM

- each node stored in a partially filled, sorted array

- number of subtrees is 1 more than the number of entries in the node

- anentry atindexiof a parent node is greater than an entries in the ith subtree; an entry at index i of a parent
node is greater than an entries in the i+Ith subtree

- every leaf has the same depth



Alex Mei | CS 24 | Winter 2020

Chapter 12: Searching
Serial Search: stepping through an array sequentially to find an element

- Worst Case: 0(n)

- Average Case: 0(n)

- Best Case: O(1)
Binary Search: stepping through a sorted array comparing the median

- Worst Case: O(log n)

- Average Case: O(log n)

- Best Case: 0(1)
Depth of Recursive Calls: longest chain of possible recursive calls
Hashing: a hashing function transforms a key into a hash location where the element would be stored if it exists
Simple Hashes include...

- Division Hash: key % capacity

- Mid Square Hash: middle digits of key * key

- Multiplicative Hash: first few digits of key * fractional constant
Hash Collision: if two elements hash to the same location
Open-Address (Linear Probing) Hashing: in the event of a collision, an element would be inserted at the next
available location

- Clustering: when a group of keys are hashed to the same location, resulting in a cluster in the table
Double Hashing: in the event of a collision, jump a number of spots equal to a second hash

- reduces clustering
Chained Hashing: each component of the table is a linked list / vector structure that can dynamically add and remove
elements

Load Factor: elements in table / size of table

Chapter 13: Sorting

Selection Sort: selects the highest element in an array and swaps it with the last element; repeats for next highest until
the array is sorted

Insertion Sort: starts with the first element and inserts into a sorted list; then adds second element to sorted list and

repeats until all elements are inserted into the sorted list



Alex Mei | CS 24 | Winter 2020

Divide and Conquer: divide a problem into smaller subproblems, solve each subproblem and use those solutions to
solve the problem
Merge Sort: divide a list into two smaller sublists; repeat until one element (sorted) lists; then, merge each sorted list
into a bigger list
Quick Sort: partition a list into two sublists, one greater and smaller than a pivot; recursively sort each sublist until the
sublists become O or 1 element (sorted)
Heap: a complete binary tree with elements that can be compared with the less than operator and has a strict weak
ordering

- root at Oth index of array

- leftchild index = 2 * parent index + 1

- rightchild index = 2 * parent index + 2
Heapsort:

1. Create the heap: O(n log n): if parent is smaller than either child, swap parent with largest child and trickle

2. Trickle: O(n log n): swap element at top of heap (largest element), with the last element in the array; then trickle

downwards.

Chapter 14: Derived Classes and Inheritance

Pure Virtual Functions: denoted by = 0; as a part of the function declaration

Pure Virtual Function example:

returnType functionNamel(paramlypes paramVars) = 0;

Abstract Classes: classes containing only pure virtual functions and cannot be instantiated

Multiple Inheritance: a single derived class and inherit from multiple base classes

Chapter 15: Graphs
Undirected Graph: set of finite nodes and finite links connecting each node
- Vertex: node
- Edge: links two vertices
Directed Graph: each edge connects a source to a target
- Loop: connects vertex to itself
- Path: a sequence of vertices connected from source to target to new target to new target...

- Multiple Edges: more than one edge connected in the same direction



Alex Mei | CS 24 | Winter 2020

- Simple Graph: no loops nor multiple edges

Adjacency Matrix: square grid of true/false values where true at row i column jimplies there is an edge from vertex i to

vertex |
Breadth-First Search: searching all adjacent edges before continuing deeper

Depth-First Search: going as deep as possible along a path before trying a different path



