
 Alex Mei | CS 24 | Winter 2020

 CS 24 Notes: Intro to Data Structures

 Chapter 1: Phases of Software Development

 Specification: precise description of the problem

 Order: the run time of an algorithm expressed in Big-O

 Big-O:

 - constants are ignored

 - the dominant term is the asymptotic run time (term with fastest growth rate

 Fully Exercising Code: test code that executes every line of code at least once and code that should be skipped should

 be tested to make sure the code is actually skipped

 Chapter 2: Classes and Abstract Data Types

 Class Example:

 class ObjectName {

 private:

 // Member Variables

 public:

 //Member Mutator Functions

 //Const Accessor Functions

 };

 Instance: a variable of object type which keeps its own copies of member variables

 Constructor: a member function which is called upon declaration of an instance

 - no parenthesis follow an instance if the constructor takes no parameters

 - the constructor must have the same name as the class

 - does not have a return type and cannot put “void” in the constructor definition

 - can have numerous constructors, each taking a different set of arguments

 Default Constructor: a constructor with no arguments

 Automatic Default Constructor: a constructor which calls only the default constructors of its member variables

 Inline Member Function: a function definition inside of the class, which substitutes the function call with said definition

 of code to enhance run time

 Alex Mei | CS 24 | Winter 2020

 Namespace: a name used to localize portions of code to prevent accidental overloading by naming conflicts (defined in

 both the header and the class implementation file)

 Namespace Example:

 namespace name{

 \\CODE BLOCK

 }

 Global Namespace: items not defined in a specific namespace; can be used without a scope resolution operator

 Unnamed Namespace: items that are defined to be local to that namespace

 Header File: a file with the extension “.h” that provides class and function definitions, which is enough information a

 programmer needs to use such class

 Header File Comment: comments regarding preconditions, postconditions, and other relevant information a

 programmer needs to use such a class (inline member definitions do not need to be interpreted)

 Macro Guard: guard to prevent header files to be included multiple times (written in the header file)

 Macro Guard Example:

 #ifndef FILENAME_H

 #def FILENAME_H

 namespace name{

 \\Class Declaration

 }

 #endif

 Value Semantics: determines how values of an object is copied to another

 Assignment Operator: x = y; copies the values of y to the variable x

 Automatic Assignment Operator: the member variables of y are copied to x for its member variables

 Copy Constructor: objectType newVar(orgVar); objectType newVar = orgVar; initializes newVar as a copy of orgVar

 Automatic Copy Constructor: initializes a new object by copying all the member variables

 Implementation File: a file containing function and class implementations which the programmer should not have to

 understand

 - Include all header files using #include “filename.h”

 Default Argument: a value used for an argument when the argument is not provided (specified only in the

 specification file)

 Formal Parameter: the parameter of a function

 Alex Mei | CS 24 | Winter 2020

 Argument: value passed into a function

 Binary Function: function with two arguments

 Operator Overloading: defining a new meaning for a defined operator (op) using the “operator” keyword

 Operator Overloading Example:

 returnType operator op(arg1, arg2){

 \\CODE BLOCK

 }

 Friend Function: a function preceded by keyword “friend” declared within a class to give access to its member variables

 even though the function is not a member function

 Chapter 3: Container Classes

 Container Class: a class where each object contains a collection of items

 std::size t: an unsigned integer type

 Static: every instance object of a class uses that same value (the variable is preceded by the “static” keyword)

 - allows use of the scope resolution operator to determine the value since it is the same for all objects

 - static should not be declared in an implementation file

 Invariant of the Class: rules that dictate how the member variables of a class represent a value or object

 Assertions: use public member functions instead of private member variables to maintain concept of abstraction

 Chapter 4: Pointers and Dynamic Arrays

 bad_alloc Exception: exception that arises from failure to allocate memory using the keyword “new”

 Arrays: an array variable is a pointer to the first element of the array

 Const Pointers: a pointer preceded by the keyword “const” means the value the pointer points to cannot be changed

 by dereferencing the pointer

 Dynamic Data Structure: a data structure whose size is determined while running and not compile time

 Deep Copy: making a copy of dynamic variables using the non-default constructors/operators because the object

 should be copied, not only the memory address

 Dynamic Classes: a classes that uses dynamic memory

 - automatic operators, copy constructor, and destructor need to be overridden

 Return Location: the copy of the local variable when the function returns and the local variable is destroyed

 Alex Mei | CS 24 | Winter 2020

 Destructor: a member function which is called to deallocate heap memory

 - no parenthesis follow an instance if the constructor takes no parameters

 - the constructor must have the same name as the class preceded by a tilde

 - does not have a return type and cannot put “void” in the constructor definition

 - rarely called explicitly since automatically called when objects become inaccessible

 Chapter 5: Linked Lists

 - return types can be const to prevent accidental pointer manipulation errors

 - arrays are better at random access; linked lists are better with inserting and deleting at the head

 Chapter 6: Templates and Iterators

 Templates: functions and classes which can be used with different data types

 Iterator: an item which iterates through all items in a container

 Item: a name of the underlying data type of a template; when a template function or class is used, the compiler will

 determine the type of Item; an Item is an example of a template parameter

 - Non template parameters must match exact type (const size t vs int vs size t)

 Template Prefix: “template <class Item>” tells the compiler that the following definition uses an unspecified data type

 Template Function Example:

 template <class Item>

 returnType functionName(args){

 //CODE block;

 }

 Instantiation: An instantiation of a template function or class is a use of the template function with a specific data type

 Unification Error: failure for compiler to determine how to instantiate a template function or class; template

 parameters must appear in the parameter list of the template function

 Template Classes:

 - must still have template prefix for each function that uses template parameters/return types

 - must be implemented in the header file; (include the implementation at the end of header instead of top of

 implementation file)

 - must use keyword “typename” outside of member functions and class definition to reference the class’s types

 - Ex: typeName className<InstantiatedType>::type

 Alex Mei | CS 24 | Winter 2020

 Output Iterators: an iterator to put elements into a result container

 Input Iterators: an iterator to be dereferenced and access elements

 Forward Iterator: must satisfy the following properties

 - has default constructor, copy constructor, and assignment operator

 - can act as input iterator

 - ++ operator can iterate the iterator to the next item

 - can be tested for equality (if current items are in the same position, then true)

 Bidirectional Iterator: a forward iterator which can move backward with the -- operator

 Random Access: quickly access a randomly selected location in a container

 Random Access Iterator: has additional operators that work in addition to the bidirectional iterator, including p[n]

 accesses the nth element ahead of the current element (different from array iterators)

 Reference Return Types: prevents returning of local variables; function returns the actual variable or object instead of

 a copy of the objects (assignment can be made to the function return value now)

 - assigning the value to a variable will still make a copy to the new variable

 - cannot be used as a constant member function

 Note: prefix ++ operator is more efficient than postfix ++ operator since the ladder makes a copy even if the return value

 is never used

 Chapter 7: Stacks

 Stacks: data structure with ordered entries such that the entries can be inserted and removed only at one end (the top)

 Last In First Out: Entries are taken out of the stack in the reverse order of their insertion

 Stack Underflow Error: Pop Empty Stack

 Stack Overflow Error: Push onto a Full Stack

 Koenig Lookup: use of arguments to determine which functions to use

 Infix Notation: Arithmetic Operator in between Operands (Ex. 2 + 3 = 5)

 (Polish) Prefix Notation: Arithmetic Operator Precedes Operands (Ex. + 2 3 = 5)

 (Polish) Postfix Notation: Arithmetic Operator Proceeds Operands (Ex. 2 3 + = 5)

 Chapter 8: Queues

 Queue: data structure with ordered entries such that entries can only be inserted at one end (the rear) and removed at

 the other end (the front).

 Alex Mei | CS 24 | Winter 2020

 First in First Out: Entries are taken out of the queue in the same order as insertion

 Queue Overflow: pushing into full queue

 Queue Underflow: popping out of empty queue

 Circular Array: array that connects last element to first by using modulo

 Deque: Double-ended queue in which entries can be inserted and removed from both ends

 Chapter 9: Recursion

 Activation Record: place where function execution is stored while a different function is called and until that is

 returned since function stops execution until the inside function is finished executing

 Run Time Stack: collection of activation records

 Fractal: an object which looks the same after magnified

 Chapter 10: Trees

 Tree: has a finite set of nodes

 - one special node: the root

 - each node may have 1 or more children

 - each node must have 1 parent unless it’s the root

 - by moving upward, you will eventually reach the root

 Empty Tree: a tree with zero nodes

 Node: consists of a datum, left child, and a right child

 Root: the top node of a tree

 Left Child: the node linked on the left

 Right Child: the node linked on the right

 Leaf: node with no children

 Parent: the node in which a child was linked from

 Siblings: two nodes are siblings if they come from the same parent

 Ancestor: A node’s parent (or parent of a node’s parents, etc..)

 Descendant: A child of a node (or child of a node’s child, etc…)

 Left Subtree: a tree beginning with a node’s left child

 Right Subtree: a tree beginning with a node’s right child

 Depth of a Node: the number of node it takes to reach the root (with the root having a depth of 0)

 Alex Mei | CS 24 | Winter 2020

 Depth of a Tree: maximum number of nodes it takes to reach the root

 Full Binary Tree: every leaf has the same depth and every non leaf has 2 children

 Complete Binary Tree: a full binary tree with added nodes that are as left most as possible

 A binary tree can be represented using an array with the following formulas:

 - Parent = floor((i-1)/2)

 - Left Child = 2i + 1

 - Right Child = 2i + 2

 Preorder Traversal: root is processed prior to processing the left, then the right subtree

 Inorder Traversal: left subtree is processed, then the root, then the right subtree

 Postorder Traversal: left, then right subtrees, then the root is processed

 Functions can be passed as parameters:

 Ex: returnType functionName(returnTypeOfFunctionParameter functionParemeter(itsParameters), dataType parameter)

 Binary Search Trees: the datum of a node is never less than one of the datums in its left subtree and never greater

 than one of the datums in its right subtree

 Chapter 11: Balanced Trees

 Heaps: binary tree with an overloaded less-than operator for comparison

 - max-heaps have parents greater than their children

 - trees are a complete binary tree

 Priority Queue: queue with relative priorities of each item in the queue

 - implemented using a max heap

 B-Trees: tree to prevent linked list configuration

 - root can have as few as one entry

 - every other node will have at least a MINIMUM number of entries and at most double the MINIMUM

 - each node stored in a partially filled, sorted array

 - number of subtrees is 1 more than the number of entries in the node

 - an entry at index i of a parent node is greater than an entries in the ith subtree; an entry at index i of a parent

 node is greater than an entries in the i+1th subtree

 - every leaf has the same depth

 Alex Mei | CS 24 | Winter 2020

 Chapter 12: Searching

 Serial Search: stepping through an array sequentially to find an element

 - Worst Case: O(n)

 - Average Case: O(n)

 - Best Case: O(1)

 Binary Search: stepping through a sorted array comparing the median

 - Worst Case: O(log n)

 - Average Case: O(log n)

 - Best Case: O(1)

 Depth of Recursive Calls: longest chain of possible recursive calls

 Hashing: a hashing function transforms a key into a hash location where the element would be stored if it exists

 Simple Hashes include…

 - Division Hash: key % capacity

 - Mid Square Hash: middle digits of key * key

 - Multiplicative Hash: first few digits of key * fractional constant

 Hash Collision: if two elements hash to the same location

 Open-Address (Linear Probing) Hashing: in the event of a collision, an element would be inserted at the next

 available location

 - Clustering: when a group of keys are hashed to the same location, resulting in a cluster in the table

 Double Hashing: in the event of a collision, jump a number of spots equal to a second hash

 - reduces clustering

 Chained Hashing: each component of the table is a linked list / vector structure that can dynamically add and remove

 elements

 Load Factor: elements in table / size of table

 Chapter 13: Sorting

 Selection Sort: selects the highest element in an array and swaps it with the last element; repeats for next highest until

 the array is sorted

 Insertion Sort: starts with the first element and inserts into a sorted list; then adds second element to sorted list and

 repeats until all elements are inserted into the sorted list

 Alex Mei | CS 24 | Winter 2020

 Divide and Conquer: divide a problem into smaller subproblems, solve each subproblem and use those solutions to

 solve the problem

 Merge Sort: divide a list into two smaller sublists; repeat until one element (sorted) lists; then, merge each sorted list

 into a bigger list

 Quick Sort: partition a list into two sublists, one greater and smaller than a pivot; recursively sort each sublist until the

 sublists become 0 or 1 element (sorted)

 Heap: a complete binary tree with elements that can be compared with the less than operator and has a strict weak

 ordering

 - root at 0th index of array

 - left child index = 2 * parent index + 1

 - right child index = 2 * parent index + 2

 Heapsort:

 1. Create the heap: O(n log n): if parent is smaller than either child, swap parent with largest child and trickle

 2. Trickle: O(n log n): swap element at top of heap (largest element), with the last element in the array; then trickle

 downwards.

 Chapter 14: Derived Classes and Inheritance

 Pure Virtual Functions: denoted by = 0; as a part of the function declaration

 Pure Virtual Function example:

 returnType functionName(paramTypes paramVars) = 0;

 Abstract Classes: classes containing only pure virtual functions and cannot be instantiated

 Multiple Inheritance: a single derived class and inherit from multiple base classes

 Chapter 15: Graphs

 Undirected Graph: set of finite nodes and finite links connecting each node

 - Vertex: node

 - Edge: links two vertices

 Directed Graph: each edge connects a source to a target

 - Loop: connects vertex to itself

 - Path: a sequence of vertices connected from source to target to new target to new target…

 - Multiple Edges: more than one edge connected in the same direction

 Alex Mei | CS 24 | Winter 2020

 - Simple Graph: no loops nor multiple edges

 Adjacency Matrix: square grid of true/false values where true at row i column j implies there is an edge from vertex i to

 vertex j

 Breadth-First Search: searching all adjacent edges before continuing deeper

 Depth-First Search: going as deep as possible along a path before trying a different path

