
 Alex Mei | CS 32 | Spring 2020

 CS 32 Notes: Intro to Operating Systems

 (refer to CS 16 and CS 24 Notes for first part of class)

 Unix Acronyms & Commands:

 PPID: Parent Process ID

 PID: Process ID

 ps Process Status: provides list of active processes on terminal

 ps -l Process Status with additional details

 top Shows resource consumption of current processes

 jobs Lists all processes running in the background

 kill <PID> terminates process associated with the PID

 Operating Systems:

 Application: terminal, vim, etc… + APIs (Application Programming Interface) which contains code for OS functionality and

 language libraries

 OS Kernel: memory space + file/process/memory management

 Hardware: physical components + software operating the physical components

 Process: program in execution; instance of program being run; contains memory and space of program

 - Foreground processes must be completed before the terminal takes additional commands

 - Foreground processes can be terminated with CTRL + C and suspended with CTRL + Z

 - Can resume a process by bringing it back into the foreground

 - Background processes allow the terminal to accept additional commands; add & to executable to run it in the

 background

 Thread: program unit executed independently of other units

 - processes can create threads, which are managed by OS

 - threads share same memory as main process

 Alex Mei | CS 32 | Spring 2020
 Unix Processes:

 fork(): copies the parent process; child process id = 0, child parent id = parent process ID

 - the PPID of bash is the parent process which many things are copied from

 - order of processes run in parallel; order of process output during intermediate execution may be unclear

 exec(): replaces the parent process with another process

 - when process finishes, the parent process is no longer valid; everything terminates

 Example: fork ls -l

 - process makes a copy of the existing process

 - the copy runs exec to replace the copy with ‘ls -l’

 - ‘ls -l’ finishes, the terminal is no longer valid, OS cleans this process from memory

 Threads

 - Each processor (core) runs instructions in parallel

 - For single-core architectures, it mimics concurrency but the processor is shared among all programs

 - A single thread can only be executed on a single core at any given time

 - Concurrency increases efficiency when multiple parts are run at the same time (independently)

 - Embarrassingly Parallel (obviously trivial that the problem can be split into independent parts) problems are a

 good fit for use of multi-threads

 - Race Conditions: if threads share memory with each other and run concurrently, read and write conflicts may

 occur

 - Atomic Transaction: everything is executed or nothing is

 - Mutex: mutual exclusion multi-threaded locking mechanism that only allows a single thread to execute code

 - only one thread can acquire the lock at a time; thread can only execute when the lock is acquired

 - provides atomic transactions while preventing race conditions

 - Deadlock: when two or more threads are waiting for each other to release a resource and execution is

 stalled

