
 Alex Mei | CS64 | Winter 2021

 CS 64 NOTES

 Main Components of a Computer:

 - Processor: execute program instructions

 - Memory

 - Input (Devices): keyboard, mouse, etc

 - Output (Devices): screen, speaker, etc.

 - Secondary Data Storage

 Volatile: main memory is considered volatile in that it is wiped when turned off; secondary data storage is not volatile

 Computer Memory: combination of address (location of data) and payload (actual data)

 - smallest representation is a bit (0 or 1)

 - 1 byte = 8 bits; 1 nibble = 4 bits

 - input and output are all in bits (machine language)

 Parts of the CPU:

 - Arithmetic Logic Unit (ALU): does binary calculations using registers and logic circuits

 - Control Unit (CU): interprets instructions intro control codes for ALU and memory

 Fetch-Execute Cycle:

 - Fetch the next instruction in the program

 - Decode the instruction

 - Get stored data as necessary

 - Execute the instruction (and store new data as necessary)

 Positional Notation: method to convert base to decimal

 - rightmost digit is the 0th position = multiplier * base raised to the power of the position

 - 2 10 = 1024 = 1 kilo; 2 20 = 1024 kilos = 1 mega; 2 30 = 1024 megas = 1 giga

 Alex Mei | CS64 | Winter 2021

 Machine vs Assembly:

 - Machine Language (ML) is the bits

 - Assembly Language is given in mnemonic codes displayed one step at a time (for better readability)

 - Compiler: translates high level to low level languages (usually assembly)

 - Assembler: translates assembly language to machine language

 Speed affected by ordering of instructions, location in memory, instruction deconstruction, and order of pipeline

 Digital Design: logical decisions made with bits

 - Combinatorial Logic: and, or, xor, etc

 - Sequential Logic: latches, ff, fsm, etc.

 Conversions:

 - Hexadecimal Conversion: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

 - Binary to Octal: Gather 3 Method

 - Binary to Hex: Gather 4 Method

 - Octal/Hex to Binary: Reverse Gather

 - To Decimal: Positional Notation

 - Decimal To: Divisor Remainder Method

 Notation:

 - Binary: 0b

 - Hex: 0x

 Two’s Complement: flip all the bits, and add one to negate

 - must specify number of bits

 - negative numbers have “1” as most significant number (positive numbers have “0”)

 - range: 0 to 2 n - 1 (unsigned) or -2 n-1 to 2 n-1 - 1 (two’s complement)

 Alex Mei | CS64 | Winter 2021

 Adding Binary:

 - N Bit Adder needs 2N (two numbers) + 1 (carry in) bits for input and N (result) + 1 (carry out) for output

 - Output Carry Bit (C): carry out at the most significant column due to computation limit (unsigned)

 - Overflow (V): only for negative number addition (signed)

 - Either [x, y > 0 AND s < 0] OR [x, y > 0 AND s < 0] for x + y = s

 - s is the sign of the resulting signed number

 Binary Logic:

 - Not (x bar): inversion of boolean

 - And (x && y, x . y): both are true

 - Or: (x || y, x + y): at least one is true

 - Xor: (x ⊕ y): exactly one is true

 Bitwise Operations:

 - Operates on bit by bit basis

 - Bitwise Not (~x): inversion of each bit

 - Bitwise And (&): and operation on bit by bit basis

 - Masking: letting some bits pass and not other bits

 - Bitwise Or (|): or operation on bit by bit basis

 - Bitwise Xor (^): xor operation on bit by bit basis

 - O ^ n = n

 - 1 ^ n = ~n

 - Bitshift Left (<<): fill positions to the right with 0 (i.e., 1001 << 2 = 100100)

 - Each bitshift multiplies result by 2

 - Bitshift Right (>>): fill position to the right with either 0 or 1 (i.e., 1001 >> 2 = 0010 or 1110)

 - Each bitshift integer divides result by 2

 - Arithmetic shift right fills using left most bit (for signed numbers)

 - Logical shift right fills using zeroes (for unsigned numbers)

 Language of a CPU: variables, integers, floating points, arithmetic ops, assignment ops

 - Restrictions: assign integers to variables and arithmetic on variables, two at a time

 Alex Mei | CS64 | Winter 2021

 Core Components:

 - Memory: hold the instructions as we operate on them

 - Program Counter (PC): pointer to next statement

 - Registers: holds the variables

 - Arithmetic Logic Unit (ALU): performs arithmetic operations

 - Instruction Register (IR): pointer to statement being currently executed

 Functionality:

 - Copy instruction from memory from where program counter points to the instruction register

 - Execute instruction in instruction register (perhaps using the registers or the ALU)

 - Update PC to next instruction (involves ALU) and repeat

 - Need to involve operating system to talk to input/output devices

 - syscall: pauses program to interact with OS

 - system call code usually placed in $v0 (action)

 - argument usually placed in $a0 (value)

 MIPS:

 - RISC architecture: reduced instruction set computer

 - file type is .asm

 - instructions in 32 bits (4 bytes); 32 registers, each with 32 bits

 - strings cannot be put in registers (common to put in memory)

 - All arithmetic operations happen in registers

 - Immediate Value: a number not stored in register

 - addu: does not care about overflow

 - multiplication: must use mult (two arguments) and mflo (destination register)

 - not does not exist; NOT A = A NOR (NOT OR) 0

 Pseudo-instruction:

 - help us to use at high level “macro”, but not actual “core” instruction in SPIM; not core to the CPU

 - li: not actual instruction because there are not enough bits (32 for instruction, 32 for data)

 Alex Mei | CS64 | Winter 2021

 Conditionals:

 - set-less-than (slt): set some register to 1 if less than comparison of other registers hold true, 0 otherwise

 - branch-equal-to (beq): compare if equal to, then go to next block (jump to new block) (else, continue)

 - Pseudo-instructions: branch less than; branch greater than; branch less or equal, branch greater or equal

 Loops:

 - j command to jump back to same portion and repeat the loop

 - condition at top with jump to exit loop

 Accessing Memory: storage from RAM

 - global (static) variables placed in memory not registers

 - .data directive to declare variables, values, and names used

 - Free Memory = stack + heap: allocated as program runs

 - Initialized Data (constants) and Uninitialized Data (mutable global variables): allocated at program load

 - must use in tangent with la to load address to register and then load word from address value

 - Alignment restriction: addresses must start in multiples of 4

 - use load word (lw) and store word (sw) to read and write to memory

 - 1 word = 32 bits = 4 bytes = 8 hexadecimals

 - Array: global variable with multiple elements

 .data Declaration Types:

 Alex Mei | CS64 | Winter 2021

 Memory Range: 32 bit addresses = 8 hexadecimals (always positive)

 - Range: even though there’s 32 bits of addresses, there’s only a portion a programmer can use

 - only half is usable (256 Megabytes)

 - everything from 0x80000000 to 0xFFFFFFFF is not usable

 - Big Endian: stores addresses from left to right (usually used by MIPS)

 - Little Endian: stores addresses from right to left

 Instruction Construction: MIPS to Assembly

 - R Type Division (<op> <rd>, <rs>, <rt>): for operating two registers Bit Number

 - op code 6 bits basic operation (31 - 26)

 - rs code 5 bits first register source operand (25 - 21)

 - rt code 5 bits second register source operand (20 - 16)

 - rd code 5 bits register destination operand (15 - 11)

 - shamt code 5 bits shift amount (for bit shift) (10 - 6)

 - funct code 6 bits function code (5 - 0)

 - 5 bits because stores 2^5 = 32 registers

 - I Type Division (<op> <rt>, <rs>, immed): for immediate values Bit Number

 - op code 6 bits basic operation (31 - 26)

 - rs code 5 bits first register source operand (25 - 21)

 - rt code 5 bits second register source operand (destination) (20 - 16)

 - address code 16 bits immediate constant or memory address (15 - 0)

 - address code is signed; limited to range of -2 15 to 2 15 - 1 for immediate values

 - for lw, the syntax is lw <rt>, <immed>(<rs>)

 - J Type Division (<op> <label>): for jumping places in program

 - op code 6 bits basic operation (31 - 26)

 - address 26 bits (25 - 0)

 Alex Mei | CS64 | Winter 2021

 Functions

 - need to execute blocks of code and pass arguments in and out

 - jal (jump and link): jump to an address and store location of next instruction in register $ra

 - jr (jump register): jump to addressed stored in a register, often $ra

 - Convention: $a0 through $a3 are argument registers for passing function arguments

 - Convention: $v0 and $v1 are return registers for passing return values

 - For nested functions, must store function call locations in stack since only one $ra

 Call Stack: store return addresses of various functions called

 - lower address = top of stack

 - $sp is a stack pointer to the top of the stack (smallest address)

 - any address smaller than $sp is garbage; any address greater is elements on the stack

 - stack bottom: largest valid address

 - stack limit: smallest valid address of a stack (how big the stack can become)

 - Push register to stack: subtract 4 from $sp

 Push:

 addiu $sp, $sp, -4

 sw $ra, 0($sp)

 Pop:

 lw $ra, 0($sp)

 addiu $sp, $sp, 4

 Alex Mei | CS64 | Winter 2021

 MIPS Calling Convention (CC):

 - Reasons to care:

 - make sure everyone follows same consistent and reliable methods

 - allow testing easier and standardized

 - Calling Convention: assume anything not in $s registers is gone

 - Protocol: rules for calling functions and return from functions

 - Do not have inherent way of doing nested and recursive functions

 - Assumptions:

 - Not utilize $fp and $gp

 - All values on stack 32-bits

 - Functions will take at most 4 arguments and return at most 2 arguments

 - Preserved Registers: $s0 - $s7, $sp, $ra

 - push the s registers that will be used onto the stack

 - Unpreserved Registers: $t0 - $t9, $a0 - $a3 (arguments), $v0 - $v1 (return values)

 Recursive Functions: base and recursive case

 - Same setup with nested functions, saving $ra and needed $s registers

 Basic Building Blocks for Digital Logic:

 - Logic Gates = Bitwise Operators: NOT, AND, OR, XOR, etc.

 - Latency: time it takes for signals to traverse logic gates

 - Half Adder: 1-bit adder without carry in bit

 Alex Mei | CS64 | Winter 2021

 Truth Tables:

 - # of entries = 2 n where n is the number of inputs

 Logic Functions: output function seen as a logical combination of inputs

 - Or = Logical Sum/Union (+)

 - And = Logical Product/Disjunction (.)

 - Minimization = Optimization for memory and space and reduces latency

 - Simplified if there are less ORed expressions and/or fewer variables in the ANDed expressions => helps

 mitigate potential hardware issues with complex logic

 Logical Rules:

 Alex Mei | CS64 | Winter 2021

 Karnaugh K-Maps:

 - Group adjacent (not diagonal) cells containing “1”; cannot include elements “0”; wrapping around is good

 - Groups must contain 2 n cells where n is an integer; can contain overlap to maximize group size

 - Want to minimize number of groups and maximize number of groups

 - Every cell containing a “1” must be in at least 1 group

 - Don’t care outputs are denote with an X; can exploit to simplify in K-maps

 - Combinatorial Logic: combining multiple logics blocks together

 Multiplexer: selects input A or B to be the output given a third input the selector

 - if S == 0, return A, else if S == 1, return B

 - Mux: N bits M inputs to 1 output

 - Demux: 1 input to N outputs (1 to M)

 Alex Mei | CS64 | Winter 2021

 Set-Reset (SR) Latch: building block for memory

 - set (R = 0, S = 1) = make output Q to 1; reset (R = 1, S = 0) = make Q to 0

 - when (R = 0, S = 0), hold Q; when (R = 1, S = 1), Q is unable to be determined due to illegal operation

 - feedback makes this latch unique to create memory in a digital design

 - The Gated Data (D) Latch: forces S and R to be opposite when E (enabled) = 1; else both 0 and holds

 - Each Gated D Latch serves as 1-bit of a register to store memory

 - The Clocked D Latch: apply a synchronous clock on input E, where the clock alternates 1 to 0 periodically

 D Flip Flop: capture D at rising edge (positive edge when 0 -> 1 of a clock)

 Finite State Machines: abstract machine that is in one of finite number of states at any given time

 - Defined by list of states, initial states, and conditions for transitions

 - State: collection of outputs in a digital machine

 - Machine: computational entity yielding a logical output given input conditions

 - Moore Machine: output is function of previous input only

 - Mealy Machine: output is function of present state and present input

 - Unconditional Transition: does not depend on any input

 Alex Mei | CS64 | Winter 2021

 .text required starting line for instructions

 # comment

 main: label to start program

 li <register>, <value> load immediate numeric <value> in <register>

 la <register>, <label> load address of <label> in <register>

 move <to register>, <from register> copy value in <from register> to <to register>

 add <register>, <value 1>, <value 2> stores <value 1> + <value 2> in <register>

 mult <register 1>, <register 2> multiply value in <register 1> with value in <register 2>

 mflo <register> stores result of mult in <register>

 sll <to register>, <from register>, <value> bitshift <value> bits left

 slt <set register>, <register 1>, <register 2> <set register> = bool of <register 1> less than <register 2>

 beq <register 1>, <register 2>, <label> jump to <label> if <register 1> == <register 2>

 bne <register 1>, <register 2>, <label> jump to <label> if <register 1> != <register 2>

 blt <register 1>, <register 2>, <label> jump to <label> if <register 1> less than <register 2>

 bgt <register 1>, <register 2>, <label> jump to <label> if <register 1> greater than <register 2>

 ble <register 1>, <register 2>, <label> jump to <label> if <register 1> <= <register 2>

 bge <register 1>, <register 2>, <label> jump to <label> if <register 1> >= <register 2>

 <label>: .asciiz <string> declare global <string> referenced by <label>

 lw <register> <N>(<address>) dereference <address> register + <N>; store in <register>

 sw <register> <N>(<address>) store value in <register> back to <address> + N

 $v0 = 1 print integer in $a0

 $v0 = 4 print string in $a0

 $v0 = 5 store input from std input in $v0

 $v0 = 10 exit program

 syscall execute action in $v0

 $zero constant zero

 $sp stack pointer

 $ra return address

 $t0 to $t9 temporary registers

 Alex Mei | CS64 | Winter 2021

 $s0 to $s7 saved temporary registers

 $a0 to $a3 argument registers

 $v0 to $v1 function result registers

