Alex Mei | Math 4A | Summer 2019

SOLUTIONS TO SYSTEMS

- Solution: one list of numbers that satisfy a system
 - Solution set: the set of all lists that satisfy a system
 - Notation: { | } is the set where everything behind the | is the conditional
- Inconsistent: no solution
- Consistent, Independent: one, unique solution
 - Needs as many unique equations as unknowns to find a unique solution for all unknowns
- Consistent, Dependent: infinitely many solutions

SYSTEMS

• Homogenous when a system is in the form:

 $a_{11}x_1 + ... + a_{1n}x_n = 0$... $a_mx_1 + ... + a_{mn}x_n = 0$

MATRICES

- Upper Triangular: when the nonzero entries are above or along the diagonal
 - The product of two upper triangular matrices is an upper triangular matrix
- Lower Triangular: when the nonzero entries are below or along the diagonal
 - The product of two lower triangular matrices is a lower triangular matrix
- Diagonal: when the only nonzero entries are along the diagonal
 - A diagonal matrix is both upper and lower triangular

MATRIX MULTIPLICATION

- The commutative property does not apply except for matrix inverses and identities.
- The coefficient matrix * (general) vector matrix = linear combination matrix of the column vectors

MATRIX TRANSPOSE

• Rows and Columns swap

• $(A + B)^T = A^T + B^T$

MATRIX ROW REDUCTION

- Works regardless of presence of augmentation
- 3 Legal **Row Operations**
 - \circ Row Swap $R_a <-> R_b$
 - \circ Row Multiply c * R_a -> R_a
 - \circ Row Addition $R_a + c * R_b \rightarrow R_a$
- Echelon Form: the leading (first non-zero) entry in every row is strictly to the right of the leading entry (pivot) above it; has staircase structure of 0s below leading entries.
 - When a leading entry is in the augmented section of the matrix, the system is inconsistent.
- **Reduced Row Echelon Form:** the leading entries of the echelon form are equal to 1 AND they are the only nonzero entries of the column.
- Free Variables: any real number
 - one in every column without a leading entry
 - \circ number of free variables equals the dimension of the solution set

MATRIX INVERTIBILITY

- Invertible when A and B are square matrices where AB = I = BA; $A = B^{-1}$; $A^{-1} = B$
- Conditions:
 - o columns are linearly independent
 - columns span Rⁿ
 - RREF is the identity matrix
- When an invertible matrix is augmented with the identity and reduced to the identity, the augmented side becomes the inverse.

LINEAR TRANSFORMATION

- preserves addition $T(v_1) + T(v_2) = T(v_1 + v_2)$
- preserves scalar multiplication T(c * v) = c * T(v)
- Composition of Linear Transformations: if T and S are linear transformations which transform Rⁿ -> R^m -> R^k
 respectively, then S * T * Rⁿ -> R^k
 - $\circ~$ If T and S are linear transformations, S * T is also a linear transformation

- Image (of a linear transformation): set of all outputs of the linear transformation
 - synonymous with column space
 - the span of the columns of the transformation matrix
 - Dimension of Im(T) is the number of leading entries in echelon form
- Kernel: the set of all vectors mapped to 0 by the transformation matrices
 - synonymous with null space
 - Dimension of Ker(T) is the number of columns without a leading entry in echelon form
- Rank Nullity Theorem: Dim(Im(T)) + Dim(Ker(T)) = the number of columns of T

VECTORS

- point in n-dimensional space
- Linear Combination: when a vector is a scalar multiple of the sum of the other vectors
- Standard Basis Vectors: (e;) has a 1 in the ith row and a 0 everywhere else
 - \circ every vector can be written as a linear combination of the standard basis vectors
- Span: all the linear combinations of a vector list
 - Notation: ϵ means in the span
 - \circ $\;$ When a system spans the R^n , the solution is consistent
 - \circ $\ \ \,$ The solution set is every vector in R^n
 - Has a leading entry in every row in echelon form (not augmented)
- Linearly Independent: when only the trivial (all coefficients = 0) is the solution to a homogeneous system.
 - When the solution set is linearly independent, the solution is unique (as long as the system is consistent)
 - None of the vectors in the set is a linear combination of the others
 - Has a leading entry in every column in echelon form (not augmented)
- **Basis:** the solution spans Rⁿ and the system is linearly independent
 - When the non-augmented portion of a matrix isn't square, the solution cannot be a basis
 - \circ $\$ Any vector can be written in R^n as a linear combination of the basis elements
- **Dimension:** number of elements in a basis of Rⁿ

VECTOR SPACE

• a set where addition and scalar multiplication within the space stays within the space (and other axioms must be true, too)

- There must be a unique vector, f, with the property that for any other vector, g, such that f + g = g (additive identity / the "zero" vector)
- **Subspace:** a subset of the original vector space in which it is still closed under addition and scalar multiplication
 - Every vector subspace is the span of some elements in the original set of vectors
 - Every vector subspace is the kernel of some linear transformation
 - The image of a subset of vectors is a subspace of the vector space
- Isomorphism: when there exists a one to one mapping between two vector spaces (an element is reversible when S(T(v)) = v; T(S(w)) = w)
 - \circ Notation: \doteq means two vector spaces are isomorphic
 - If V is a vector space and S is a basis for it, then V is isomorphic to Rⁿ and every vector in V can be written as a linear combination of the vectors in S
 - preserves length of the basis

BIJECTIVITY

- Injective: one to one mapping of input to output
 - Ker(T) = 0
 - Check for independence = check for injectivity (has a leading entry in every column in echelon form)
- Surjective: Image of the transformation is R^m given T * Rⁿ -> R^m
 - \circ $\$ columns of the transformation matrix span R^m
 - has a leading entry in every row in echelon form
- Bijective: both injective and surjective
 - Square transformation matrices that are injective or subjective are bijective
 - Bijective functions have an inverse, which is also bijective
 - \circ T R^m -> R^m

DETERMINANTS

- 1 x 1 matrix = only element in the matrix [a b]
- 2 x 2 matrix = ad bc; the matrix being defined as: c d]
- For a diagonal and upper/lower triangular matrices, the determinant is the product of all the diagonal entries
- det A = $\sum_{j=1}^{n} (-1)^{1+j} * a_{1j}^{n} * det A_{1j}$

- element * determinant of the matrix minus the row and column containing the element, alternating in positivity based on position moving rightward or downward
- when a square matrix's det != 0, the matrix is invertible
- Properties
 - det(AB) = detA * detB
 - \circ det(kA) = kⁿ * detA where n is the dimension of A
 - o det(A⁻¹) = 1/detA
- Characteristic Polynomial = det(A λl)
 - When det(A λ I) = 0, there must be something in the kernel; Ax = λ x where A acts like scalar multiplication and λ is a scalar multiple
 - The degree is equal to the dimension of A
- Additive Multiplicity: the number of times a factor in a polynomial is repeated
- Geometric Multiplicity: dimension for the eigenspace for λ

EIGENVALUES & EIGENVECTORS

- **Eigenvalue:** Λ is an eigenvalue for A when Ax = Λ x for some nonzero x (acts a scalar)
 - Roots of the characteristic polynomial
 - The eigenvalues of a diagonal matrix are the diagonal entries
- **Eigenvector:** x is an eigenvector if x is nonzero and $Ax = \lambda x$ for some scalar λ
 - A vector from the basis solution using the row-reduced form of (A λ I) * x = 0
 - Eigenvectors are in the Kernel of $(A \lambda I)$
 - Eigenvalues of AB = Eigenvalues of BA given that A and B are square matrices
 - The eigenvectors for a diagonal matrix are the standard basis vectors
 - There exists at least one set of eigenvalues and eigenvectors for an invertible matrix

DIAGONALIZATION

- A = PDP⁻¹ where D is a diagonal matrix
 - There must exist a number of linearly independent eigenvectors which equal the dimension of A
 - P is a matrix of eigenvectors and D is a diagonal matrix of eigenvalues where the ith eigenvector is in the ith column of P and the ith eigenvalue is in the ith diagonal entry of D
 - A is diagonalizable when the geometric multiplicity = algebraic multiplicity for every eigenvalue

• **Fundamental Theorem of Algebra:** the number of complex roots that exist in a polynomial is the highest degree of that polynomial

EIGENSPACES

- The set of vectors in V which are eigenvectors for a certain eigenvalue λ where T is a linear transformation from V -> V and T(v) = λv
- Are always vector subspaces

COMPLEX NUMBERS

- If a + bi != 0, a + bi is invertible
- 2-dimensional vector space
 - Basis: { 1, i }
- Multiplication
 - i: rotation
 - real number: scaling
- $a + bi = r * e^{i*\Theta}$ where $r = \sqrt{a^2 + b^2}$ and Θ = arctan(b/a)

DOT PRODUCTS

- Dot (Inner) Product of two vectors v and w in $R^n = v^T * w$.
- Properties
 - o communicative, associative, distributive
 - The dot product of u and u >= 0, the dot product of u and u = 0 exactly when u = 0.
- Length (norm): square root of the dot product of a vector by itself
 - ||c * v|| = |c| * ||v||
 - Unit Vector: a vector u such that ||u|| = 1
- **Direction:** two vectors v and u are in the same direction if v = c * u for some scalar c
- **Distance:** the distance between two vectors u and v = llu vll
- Angle: | υ dot v | = ||υ|| * ||v|| * cos Θ

ORTHOGONALITY

- Two vectors u and v are orthogonal (\perp) if the dot product of u and v = 0
 - \circ u and v are orthogonal if and only if d(u, v) = d(u, -v)
 - $\circ~$ u and v are orthogonal if and only if IIu + vII^2 = IIuII^2 + IIvII^2

- **Orthocomplement:** all vectors in v in \mathbb{R}^n such that v \perp w for every w in W given that W is a subspace of \mathbb{R}^n
 - $\circ \quad \textbf{Notation: } W^{\perp} (W \text{ perp})$
 - \circ Must check the subspace conditions for the orthocomplement of W
 - \circ (W^{\perp})^{\perp} = W
 - $(Im A)^{\perp} = Ker A^{T}$
- Orthogonal Sets: a set of vectors {u₁, ..., u_p} in Rⁿ such that u_i != u_i where i != j.
 - Orthogonal sets are linearly independent and a basis for the subspace spanned by that set of vectors
- Orthogonal Basis: a basis that is also an orthogonal set in a subspace for W of Rⁿ
- **Orthogonal Projection:** decomposition of a vector (y) into the parallel (y-hat) and perpendicular (z) components to another vector (u)
 - y-hat = projection map $P_{u}(y) = ((y \text{ dot } u)) / (u \text{ dot } u)) * u$
 - \circ z = y P_u(y)
- Projection Matrices
 - Properties: $P^2 = P$; $P = P^T$
- **Orthonormal:** a set of vectors $\{u_1, ..., u_n\}$ if u_i dot $u_j = 0$ if i != j and u_i dot $u_i = 0$ for each i
- Orthogonal (Unitary) Matrices: A matrix U is orthogonal (unitary) if U^T * U = U * U^T = I
 - \circ U is orthogonal if and only if the columns of U form an orthonormal basis for R^n
 - When U is orthogonal, U*x dot U*y = x dot y
 - U preserves length and angle, providing numerical stability (preserves dot product)
- **Orthogonal Projection:** a square matrix P with the property that $P^T = P$ and $P^2 = P$.
 - If Im(P) = W, P is an orthogonal projection onto W
 - Given a subspace W of Rⁿ, a vector v in Rⁿ can be written as v = w + z where w is a vector in W and z is a vector in W^{\perp}. w = P_w(v)
 - $\circ \Sigma_{i=1}^{p} (e_i \text{ dot } w_i) w_i$ where i is the ith column in the projection matrix
 - For each w in W $P_w(w) = w$
 - $\circ \quad \text{Ker } \mathsf{P}_{\mathsf{W}} \texttt{=} \mathsf{W}^{\!\!\perp}$
 - $\circ \quad \text{If } w \text{ in } W \text{ and } v \text{ in } R^n \text{, } v \text{ dot } w = P_w(v) \text{ dot } w$

LEAST SQUARES

• If A is not a square matrix, a least squares solution to the system A*x = b is a vector x with the property that II b -

A * x-hat II <= II b - Ax II for any x in R^m

• input that is closest to the output (for an inconsistent)

- $\circ \quad \text{perpendicular to the image of A}$
- $\circ \quad A^{\mathsf{T}} \star A \star x = A^{\mathsf{T}} \star b$
- \circ There is exactly one least-square solution to a system when Ker A = { 0 }
- $\circ \quad \mathsf{A}^{\mathsf{T}} \star \mathsf{A} \text{ is invertible if and only if Ker A = { 0 } }$

CHANGE OF BASIS

• Not on Final: Lecture 7, 12

GRAM-SCHMIDT

• Not on Final: Lecture 17