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1 Counting

Counting Principle: Suppose the outcome of some experiment has k independent components.
Then, the total number of outcomes is the product of the outcomes of each component, denoted by
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k

I

i=1
Addition Principle: Suppose a collection of outcomes is partitioned into k subcollections. Then,

the total number of outcomes is the sum of the outcomes of each subcollection, denoted by n;.

k
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Permutation Principle: Given n distinguishable objects, there are n! ways to arrange them.

n
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Distinguishable Principle: In a collection of n total outcomes, each outcome is part of a family of

k distinguishable outcomes. The total number of distinguishable outcomes is equal to:
n
k

Choosing Principle: The number of ways to choose k objects out of n objects where order doesn’t

()= (20

Choose Notation:

matter is:



Note: When the order does matter, it is considered a permutation.

nPk = (Z)m - (n%'k),

Word Counting Principle: Given n letters, k of which are distinct, such that the first letter

Permutation Notation:

repeated r; times up to the kth letter repeated r, times, the total number of words that can be

creased from the n letters is:

<r1,7«;..,rk) - (rl)!(rg!!...(rk)! - (Z) (n ;2“)‘“ <n o _Z ) mm_l)

Binomial Expansion: Given the polynomial (x+y)", the binomial expansion of the polynomial is:

0

k=0

Note: when x and y both equal 1, then:

zn: (Z) 1k1nh = zn: (Z) = (141)" =2

k=0 k=0

Non-Negative Integer Solutions: The number of ways to divide n indistinguishable objects into

n+k—1
k—1

Positive Integer Solutions: The number of ways to divide n indistinguishable objects into k bins

k bins (where bins may have 0 objects) is:

where each bin must have at least i objects is:

((n —i *kk)jl (k — 1))

2 Set Theory

2.1 Sets

Set: an unordered collection of unique objects called elements or members denoted by {...}
Member Notation: a member a in set S is denoted by a € S

Equal Sets: two sets A and B are equal if and only if Vx (x € A <> x € B);if A C Band B C A,
then A =B

Empty Sets: also known as a null set, an empty set has no elements denoted by ()



Universal Set: denoted by the letter U, this set contains all the elements under consideration rep-
resented by a rectangle in a Venn Diagram

Cardinality: if there are exactly n distinct elements of set S, then the cardinality of the finite set
S is n, denoted by | S | =n

Subset: The set A is a subset of B, denoted by A C B, if and only if every element in A is in B
Proper Subset: The set A is a proper subset of B, denoted by A C B, if A C B and there exists an
element in B that isn'tin A:Vx (x € A >xeB)AIx(xe€B—-x¢A)

2.2 Set Operations

Union: The union of two sets A and B, denoted by A U B is the set that contains the elements in
A, B, or both.
AUB={z|x€ AVz e B}

Generalized Union: The union of a collections of sets is the set that contains all elements that are

in at least one set of the collection.

AJUA U A, = UAi
=1

Intersection: The intersection of two sets A and B, denoted by A N B is the set that contains the
elements in both A and B.
ANB={zx|x€ ANz € B}

Generalized Intersection: The intersection of a collections of sets is the set that contains all

elements that are in every set of the collection.

A NAN A, = ﬂAi
=1

Complement: The complement of the set A, denoted by A or AL is the complement of A with
respect to U (the universal set.)
A—{zeU|zgA}

Disjoint: Two sets A and B are considered disjoint if their intersection is the empty set.
ANB=10

Pairwise Disjoint: An indexed family of sets {A;}! ;| is considered pairwise disjoint or mutually

exclusive if A; N A; = () whenever i # j.



Partition: Let S be a non-empty set. A partition 7 of S is a family 7 = {A;}?_, of non-empty subsets

of S satisfying the condition that every element in S belongs to exactly 1 A;.

Ai#Aj;i#j

De Morgan’s Laws:
(ANB)t = Au B

(AUuB)\t = APn B
De Morgan’s Laws, Generalized:
U4y =4
i=1 i=1
N

=1

At = OAE
i=1

3 Probability

3.1 Basic Probability

Sample Space: A sample space, €2, is a set which represents the collection of all possible outcomes
of an experiment.

Event: An event, E, is a subset of the sample space 2 (to which we prescribe a probability).
Probability: Let €2 be a sample space. Then, a probability P on 2 is a function assigning a number
to each event such that the axioms of probability are true.

Axioms of Probability:

1. 0 < P(E) <1 for every event E

2. P(Q) =1

3. If {Ey, Ey, ..., E, } are pairwise disjoint, then P(|J_,E;) = >, P(E;).
Properties of Probability:

e P(E°) =1-P(E)

e If E C F, then P(E) < P(F)



e Inclusion Exclusion Principle (for two events):

P(AuB)=P(A)+P(B)—-P(ANDB)

e Inclusion Exclusion Principle (for three events):

P(AUBUC)=P(A)+P(B)+ P(C)—P(ANB)—P(ANC)—P(BNC)+ P(ANnBNC(C)
e Inclusion Exclusion Principle, Generalized:

P(E\UE,U..E,) =Y P(E) =Y P(ENE)+ ..+ (-1)"""P(E; N E;N ..E,)
=1

i<j

Probability Space: A space defined to be (€2, F, P) where (2 is the sample space, F is the set of all
possible events, and P is probability associated with each event.

Set of All Events: Given the sample space €1, the set of all events F is the set of all subsets of €.
Probability Theorem: Suppose (€2, F, P) is a finite probability space such that all outcomes are
equally likely. Then, for any event E:

3.2 Conditional Probability

Conditional Probability: Let (€2, F, P) be a probability space. Suppose B is some event where
P(B) > 0. Then, the conditional probability of A C 2 given B is:

P(ANB)

Multiplication Rule (Special Case): (derived from the formula of conditional probability)
P(B)« P(A| B)=P(ANB)
Multiplication Rule: Let Eq, ..., E,,. Then,
P(EyNEyN..E,)=P(E))* P(Ey | Ey)* ..« P(E, | ExNEyN ...E,_1).

Total Law of Probability: If E,, ..., E, creates a partition of €2, then...

P(F) =} P(E)«P(F| E)



Baye’s Formula (Simple Version):

P(E)x P(F | E)
P(E)* P(F | E)+ P(E®) « P(F | EY)

P(E|F) =

Generalized Baye’s Formula: If {E;, ..., E,} partitions Q and F is any event, then...

P(Ey) * P(F' | Ey)
>y P(E;)  P(F | E;)

=1

P(Ey | F) =

3.3 Independence

Independent Events: Two events E and F are independent if...
P(ENF)=P(FE)* P(F)

Note: If E and F are independent, then E and FE, EP and F, and EC and FC are all independent.
Generalized Independence: Suppose several events Ey, ..., E, are independent. Then, P(E; N E;)
= P(E;) * P(E;) whenever i # j and P(E; N E; N E;) = P(E;) * P(E;) * P(E;) whenever i # j # k
and ... until P(E; N Eo N ... E,) = P(E;) * P(Ep) * ... P(E,)

4 Random Variables

Random Variable: Let €2 be a sample space. A (real-valued) random variable is a function of X: 2
— R.

State Space: Sx C R is the image of X; That is X(2) = Sx = all possible outcomes of X. (Trans-
formation of the sample space by X.)

Cumulative Distribution Function: Abbreviated as a CDF, if X is a random variable, then the
cdf of X, denoted, Fy, is the function Fx : R — [0, 1], where Fx(t) = P(X < t).

Properties of CDF: Fx(t) denotes the probability the the random variable X takes on a value that

is less than or equal to t. The following properties are true:
e I is a non-decreasing function.

o lim (Fy(t)) =1

t—o00

o lim (Fx(t))=0

t——o0

4.1 Discrete Random Variables

Discrete Random Variable: A discrete random variable X is one where the state space of X, Sx,

is countable.



Probability Mass Function: Abbreviated as pmf, the probability mass function of discrete random
variable X is the function px : Sx — [0, 1], with px(k) = P(X = k).

Note: P(X=k) = Fx(k") - Fx(k™)

Note: The cdf of a discrete random variable looks like a step function with jumps at each point in Sy
where the gap of the jump at s € Sy is px(s) = P(X = s).

Bernoulli Random Variable: Suppose that one trial or experiment is performed where the result
ends in success or failure. Let X = 1 denote a success and X = 0 denote a failure. Let p € [0, 1] be
the probability of success. Then, the state space Sy = {0, 1} and the pmfis px(0) =1 - p and px(1)
= p. Any random variable with this property is called a Bernoulli Random Variable and is denoted
by X = Ber(p)

Binomial Random Variable: Suppose we do n independent trials where each result ends in success
or failure and the probability of success is constant, p € [0, 1]. Let X be the number of successes in
n trials. Then, X is a Binomial Random Variable denoted by X=Bin(n, p) with Sx = {0, 1, 2, ..., n}

and

px (k) = <Z) g e (1— )t

Poisson Random Variable: Given the average rate of of the event, denoted by A, and the events

are independent of time since the last event, denoted X = Pois(\)

Sy ={0,1,2,...}

Ly A
px(k)=e ’\*H

Geometric Random Variable: Used to find the number of independent trials needed before the

first success, denoted X = Geom(p) where the probability of success, p € [0, 1]

Sx =1,2, ...

px(k) = (1 —p)* " xp

Indication Function: An indicator function I for some random variable X will have probability of

0
[ { x occurs

P of success, denoted by I, is...

1 2% occurs

where I = Ber(p) and P(X) = p.



4.2 Expected Value

Expected Value: The expected value of a random variable X with CDF F,(t) = P(X < t), denoted
by E(X), is

E(X):/Ooo(l—FX(t))dt—/_O FX(t)dt:/QX(w)dP(w)

oo

Linearity: Expected value is a linear function which is preserves addition and scalar multiplication.

Elap * X" +ap 1 * X" '+ ag) = an * BE(X™) +ap 1 * E(X" ) + ...+ ap
Expected Values of Common Discrete RV:
e E(Bin(n,p)) =nx*p
o E(Pois(\)) =\
1
e B(Geom(p)) = ~
p
Discrete EV Theorems:

e If X is a discrete random variable, then

E(X)= Y kxpx(k)

e For a function g : R — R and a discrete random variable X, then

E(g9(X)) = g(k) = px(k)

keSx
e For two random variables X and Y in the same sample space,

E(X+Y)=EX)+ E(®Y)

Moment: The nth moment of the discrete random variable X is the expectation E(X").

E(X") =Y k" xpx(k)

keSx

Variance: The variance of a random variable X is defined as E((X — p)?) where p = E(X), which

conveys how spread out the values of X are from its mean.

Var(X) = E(X — p)*) = E(X?) — (B(X))”



Non-linearity: Variance is a non-linear function. In fact, Var(a * X +b) = a* x Var(zx).
Variance of a Constant: The variance of any constant is 0.

Variances of Common Discrete RV:
e Var(Bin(n,p)) =n*xpx* (1 —p)
e Var(Pois(\)) = A

o Var(Geom(p)) =

4.3 Approximating Binomial with Poisson

Poisson Limit Theorem: Also known as the Law of Rare Events:, Suppose that lim n % p =
n—oo

A < oo (p approaches 0 and n approaches infinity in such a way that n * p approaches lambda is

finite). Then, P(Bin(n,p) = k) = P(Pois(\) = k) as n — oc.

Conditions for Poisson Approximation

e 1 is large

en*p<<n

4.4 Continuous Random Variables

Continuous Random Variable: X is a continuous random variable when there exists a function

fx: R — R such that Fx(t) is continuous.

Pt = [ fe(o)ds

Probability Density Function: The pdf of a random variable x is denoted by fx(t).
PDF Properties:

o forallt, fx(t) >0

d
o ZFx() = fx (1)

¢ P(X=k) =0
Uniform Random Variable: A continuous random variable X, denoted X = Unif(a, b) = U(a, b)
is said to be uniformly distributed on [a, b] if X has pdf:

1

fx(t) = b—a
0 otherwise

a<t<b



Note: the strictness of end points don’t matter for continuous random variables.
Note: A discrete uniform random variable is Z € [a, b].
Exponential Random Variables: An exponential random variable describes the amount of time

until a specific event occurs. X is an exponential random variable with parameter A > 0 if it has pdf:

Axe M >0
Ix(t) =

0 otherwise

Normal Random Variables: X is a normal random variable (X is normally distributed with
parameters = E(X) and 0? = Var(X)), denoted by X = N(u, 02), if the density of X is given by:

. —(t —p)?
MO= e

Standard Deviation: The standard deviation of a random variable is denoted by o.
Standard Normal Random Variable: Z is defined as a standard normal random variable when Z
=Npu=00=1)

X
Note: A change of variables from X to Z can be made such that Z =
CDF of Standard Normal RV: F,(a) = ®(a).
Property of ®(a): ®(—a) =1 — ®(a)

—
.

4.5 Expected Value for Continuous Random Variables

Expected Value Formulas: When X is a continuous random variable,

B(X) = /_ tx fy(t)dt

o0

B(o(0) = [ gft) fuyat

o0

4.6 Poisson Process

Poisson Process: A process which counts the number of events at which these events occur in a
given time interval. When X = Exp(1/)), E(X) =1 / XA and X=Pois()\) where E(X) is the average
number of events in a given time interval.

Memoryless Property: We say a non-negative random variable X is memoryless if

Vs,t > 0[P(X >s+t| X >t)=P(X > s)]

10



Note: Exp(\) and Geom(p) is memoryless

4.7 Functions of Random Variables

Process: To find the pdf of Y given a continuous random variable X such that Y = g(X), follow the
following 3 steps:

1. Find the cdf of Y in terms of the cdf of X or in terms of t.
2. Take derivative to get the pdf of Y.
3. Find bounds where defined.

Note: this method words for non-continuous random variables, too.

5 Jointly Distributed Random Variables

Jointly Distributed: X and Y are jointly distributed if they are both random variables on the same
sample space €2. The joint CDF of X and Y is...

nyy(S,t) :P(X SS,YSt)

Marginal Distribution: Given jointly distributed random variables X and Y, the marginal distri-
bution of X is...
Fx(s)=P(X <s,Y < o0)

5.1 Jointly Discrete

Jointly Discrete: If random variables X and Y are jointly discrete, then the joint pmf of X and Y
is...
pxy(k,m)=P(X =k, Y =m)

Marginal Mass Function: Given jointly discrete random variables X and Y, the marginal mass

function of Y is...

py(m) =Y pxy(k,m)

keSx

Joint CDF': The joint cdf of jointly discrete random variables X and Y is...

Fry(k,m) =Y pxy(a,b)

a<k b<m

11



Joint Expectation: The joint expectation of jointly discrete random variables X and Y is...

Z Z (k,m) * px.y(k,m)

kESX mESy

5.2 Jointly Continuous

Jointly Continuous: If X and Y are random variables on a common sample space €2, X and Y are

jointly continuous when there is a function f: R? — Ry such that...

P((z,y) € D) = //DfX’Y(x’y)dA

Joint Density: If X and Y are jointly continuous random variables, then the joint density is...

)
fX,Y($7y) = WFXY(UU y)

Joint CDF': The joint cdf of jointly continuous random variables X and Y is...

Fxy(a,b) / / fxy(z,y)dzdy

Marginal Density: The marginal density of X for jointly continuous random variables X and Y is...

$)=/_ fxy(z,y)dy

5.3 Independent Random Variables

Independent: Random variables X and Y are independent when
P(X € AYeB)=P(X €A« P(Y €B)

Independence Theorem: If X and Y are jointly distributed random variables, then the following

statements are equivalent:
e X and Y are independent
o I'xy(a,b) = fx(a)* fy(b)
o If X and Y are discrete, then pxy(a,b) = px(a) * py(b)

e If X and Y are continuous, then fxy(a,b) = fx(a)* fy(b)

12



5.4 Conditional Distributions

Notation: The following denotes the conditional mass and conditional distribution functions of X

given Y = m respectively for the discrete case:
pxyy(k|m)=PX =Fk|Y =m)

Fyy(k|m)=P(X <k|Y =m)

For the continuous case,

~ fxy(z,y)
fX\Y(‘r | y) - fY(y)

Fxy(a|y) = /a fxpy (x| y)de

Independence: If joint random variables X and Y are independent, then the conditional mass and

density functions are:

pxpy (k| m) = px(m)

Ifxy(@ | y) = fx(x)

5.5 Conditional Expectation

Conditional Expectation: Suppose Y is a discrete random variable. Then the expectation of Y

given event A is:
E(Y |A)= Y mxP(Y =m]|A)

meSy

Given Random Variable X = x instead of event A, the conditional expectation of Y is (for the jointly

discrete case)...
EY|X=2)=> mxPY=m|X=x)

meSy

For the jointly continuous case...
B I X =)= [ fixly] o)y

Properties of Conditional Expectation:
e Linearity persists: E(X +Y | A) =FE(X | A)+ E(Y | A)

e Total Law of Expectation: E(Y) =>""  P(A;) x E(Y | A;) for partition of {4;}.

13



5.6 Sums of Independent Random Variables

Convolution: For independent random variables X and Y, the joint pmf or density is found by

breaking {X + Y = n} into a disjoint union of sets. For the discrete case,
pxiv(n) =Y px(k)*py(n —k)
keSx
Special Cases:
o Pois(\;) + Pois(A\y) = Pois(A + Aa)
e Bin(n,p) + Bin(m,p) = Bin(n + m, p)
o N(u1,0%) + N(u2,03) = N(p1 + pa, 07 + 03)

Independent and Identically Distributed: Random variables X and Y are independent and
identically distributed (iid) if they are independent and share the same probability distribution.

Negative Binomial Distribution: A random variable X has a negative binomial distribution,
denoted X = NegBin(k, p), with parameters k and p where k is nonnegative, if S, = {k,k + 1,...}

with pmf for n > k (where n denotes number of trials until the kth success):

n—1

i m - (171 et

5.7 Covariance

Covariance: The covariance of jointly distributed random variables X and Y, denoted Cov(X, Y),

IS...

Cov(X,Y) = E[(X — ux)(Y — py)] = E(XY) — E(X) * E(Y)
Properties of Covariance:
e Cov(X,Y) = Cov(Y, X)

e Cov(X, X) = Var(X)

Cov(a*X 4+ b, Y) = a*Cov(X, Y)

Cov(X +Y, Z) = Cov(X, Z) + Cov(Y, Z)

If X and Y are independent, then Cov(X, Y) =0

Note: Cov(X, Y) = 0 doesn’t imply X and Y are independent.

Variance Theorem: Let X and Y be random variables. Then,
Var(X)+Var(Y)+ 2+ Cov(X,Y) =Var(X +Y)

14



Note: When X and Y are independent, Cov(X, Y) = 0 so Var(X) + Var(Y) = Var(X + Y)

General Case: For n random variables,
Var(X; + Xo +..X,) = Z Var(X;) + Z Cov(z;, x;)
i=1 i#j

Correlation: Suppose that X and Y are jointly distributed random variables with nonzero variances.
Then, the correlation of X and Y, denoted Corr(X, Y), is:

_ Cov(X,Y)
VVar(X) x/Var(Y)

Corr(X,Y) =7

Note: If Corr(X, Y) = 0, we say X and Y are uncorrelated.
Note: If X and Y are independent, then Corr(X, Y) = 0.
Note: Corr(X, Y) = 0 doesn’t imply X and Y are independent.

5.8 Moment Generating Functions

Moment Generating Function: The moment generating function (MGF) of a random variable X

with real parameter t (where t is the t-th moment) is defined by...
Mx(t) = E(e"")

MGF Theorem: Let X and Y be 2 random variables with MGFs Mx(t) and My (t). If Mx(t) =
My (t), then X and Y have the same distribution. (Random variables have unique MGFs)

15



