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1 Counting

Counting Principle: Suppose the outcome of some experiment has k independent components.

Then, the total number of outcomes is the product of the outcomes of each component, denoted by

ni.
k∏
i=1

ni

Addition Principle: Suppose a collection of outcomes is partitioned into k subcollections. Then,

the total number of outcomes is the sum of the outcomes of each subcollection, denoted by ni.

k∑
i=1

ni

Permutation Principle: Given n distinguishable objects, there are n! ways to arrange them.

0! = 1; (n > 0) : n! =
n∏
i=1

i

Distinguishable Principle: In a collection of n total outcomes, each outcome is part of a family of

k distinguishable outcomes. The total number of distinguishable outcomes is equal to:

n

k

Choose Notation:

nCk =

(
n

k

)
=

n!

k!(n− k)!

Choosing Principle: The number of ways to choose k objects out of n objects where order doesn’t

matter is: (
n

k

)
=

(
n

n− k

)
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Note: When the order does matter, it is considered a permutation.

Permutation Notation:

nPk =

(
n

k

)
k! =

n!

(n− k)!

Word Counting Principle: Given n letters, k of which are distinct, such that the first letter

repeated ri times up to the kth letter repeated rk times, the total number of words that can be

creased from the n letters is:(
n

r1, r2, ..., rk

)
=

n!

(r1)!(r2)!...(rk)!
=

(
n

r1

)(
n− r1

r2

)
...

(
n− r1 − r2 − ...rk−1

rk

)
Binomial Expansion: Given the polynomial (x+y)n, the binomial expansion of the polynomial is:

n∑
k=0

(
n

k

)
xkyn−k

Note: when x and y both equal 1, then:

n∑
k=0

(
n

k

)
1k1n−k =

n∑
k=0

(
n

k

)
= (1 + 1)n = 2n

Non-Negative Integer Solutions: The number of ways to divide n indistinguishable objects into

k bins (where bins may have 0 objects) is: (
n+ k − 1

k − 1

)
Positive Integer Solutions: The number of ways to divide n indistinguishable objects into k bins

where each bin must have at least i objects is:(
(n− i ∗ k) + (k − 1)

k − 1

)

2 Set Theory

2.1 Sets

Set: an unordered collection of unique objects called elements or members denoted by {...}
Member Notation: a member a in set S is denoted by a ∈ S

Equal Sets: two sets A and B are equal if and only if ∀x (x ∈ A ↔ x ∈ B); if A ⊆ B and B ⊆ A,

then A = B

Empty Sets: also known as a null set, an empty set has no elements denoted by ∅
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Universal Set: denoted by the letter U, this set contains all the elements under consideration rep-

resented by a rectangle in a Venn Diagram

Cardinality: if there are exactly n distinct elements of set S, then the cardinality of the finite set

S is n, denoted by | S | = n

Subset: The set A is a subset of B, denoted by A ⊆ B, if and only if every element in A is in B

Proper Subset: The set A is a proper subset of B, denoted by A ⊂ B, if A ⊆ B and there exists an

element in B that isn’t in A: ∀x (x ∈ A → x ∈ B) ∧ ∃x (x ∈ B → x /∈ A)

2.2 Set Operations

Union: The union of two sets A and B, denoted by A ∪ B is the set that contains the elements in

A, B, or both.

A ∪B = {x | x ∈ A ∨ x ∈ B}

Generalized Union: The union of a collections of sets is the set that contains all elements that are

in at least one set of the collection.

A1 ∪ A2 ∪ ...An =
n⋃
i=1

Ai

Intersection: The intersection of two sets A and B, denoted by A ∩ B is the set that contains the

elements in both A and B.

A ∩B = {x | x ∈ A ∧ x ∈ B}

Generalized Intersection: The intersection of a collections of sets is the set that contains all

elements that are in every set of the collection.

A1 ∩ A2 ∩ ...An =
n⋂
i=1

Ai

Complement: The complement of the set A, denoted by A or A{, is the complement of A with

respect to U (the universal set.)

A{ = {x ∈ U | x 6∈ A}

Disjoint: Two sets A and B are considered disjoint if their intersection is the empty set.

A ∩B = ∅

Pairwise Disjoint: An indexed family of sets {Ai}ni=1 is considered pairwise disjoint or mutually

exclusive if Ai ∩ Aj = ∅ whenever i 6= j.
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Partition: Let S be a non-empty set. A partition π of S is a family π = {Ai}ni=1 of non-empty subsets

of S satisfying the condition that every element in S belongs to exactly 1 Ai.

n⋃
i=1

Ai = S

Ai 6= Aj; i 6= j

De Morgan’s Laws:

(A ∩B){ = A{ ∪B{

(A ∪B){ = A{ ∩B{

De Morgan’s Laws, Generalized:

(
n⋃
i=1

Ai)
{ =

n⋂
i=1

A{
i

(
n⋂
i=1

Ai)
{ =

n⋃
i=1

A{
i

3 Probability

3.1 Basic Probability

Sample Space: A sample space, Ω, is a set which represents the collection of all possible outcomes

of an experiment.

Event: An event, E, is a subset of the sample space Ω (to which we prescribe a probability).

Probability: Let Ω be a sample space. Then, a probability P on Ω is a function assigning a number

to each event such that the axioms of probability are true.

Axioms of Probability:

1. 0 ≤ P(E) ≤ 1 for every event E

2. P(Ω) = 1

3. If {E1, E2, ..., En} are pairwise disjoint, then P(
⋃n
i=1Ei) =

∑n
i=1 P(Ei).

Properties of Probability:

• P(Ec) = 1 - P(E)

• If E ⊆ F, then P(E) ≤ P(F)
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• Inclusion Exclusion Principle (for two events):

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• Inclusion Exclusion Principle (for three events):

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

• Inclusion Exclusion Principle, Generalized:

P (E1 ∪ E2 ∪ ...En) =
n∑
i=1

P (Ei)−
∑
i<j

P (Ei ∩ Ej) + ...+ (−1)n+1P (E1 ∩ E2 ∩ ...En)

Probability Space: A space defined to be (Ω, F, P) where Ω is the sample space, F is the set of all

possible events, and P is probability associated with each event.

Set of All Events: Given the sample space Ω, the set of all events F is the set of all subsets of Ω.

Probability Theorem: Suppose (Ω, F, P) is a finite probability space such that all outcomes are

equally likely. Then, for any event E:

P (E) =
| E |
| Ω |

3.2 Conditional Probability

Conditional Probability: Let (Ω, F, P) be a probability space. Suppose B is some event where

P(B) > 0. Then, the conditional probability of A ⊆ Ω given B is:

P (A | B) = PB(A) =
P (A ∩B)

P (B)

Multiplication Rule (Special Case): (derived from the formula of conditional probability)

P (B) ∗ P (A | B) = P (A ∩B)

Multiplication Rule: Let E1, ..., En. Then,

P (E1 ∩ E2 ∩ ...En) = P (E1) ∗ P (E2 | E1) ∗ ... ∗ P (En | E1 ∩ E2 ∩ ...En−1).

Total Law of Probability: If E1, ..., En creates a partition of Ω, then...

P (F ) =
n∑
i=1

P (Ei) ∗ P (F | Ei)
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Baye’s Formula (Simple Version):

P (E | F ) =
P (E) ∗ P (F | E)

P (E) ∗ P (F | E) + P (E{) ∗ P (F | E{)

Generalized Baye’s Formula: If {E1, ..., En} partitions Ω and F is any event, then...

P (Ek | F ) =
P (Ek) ∗ P (F | Ek)∑n
i=1 P (Ei) ∗ P (F | Ei)

3.3 Independence

Independent Events: Two events E and F are independent if...

P (E ∩ F ) = P (E) ∗ P (F )

Note: If E and F are independent, then E and F{, E{ and F, and E{ and F{ are all independent.

Generalized Independence: Suppose several events E1, ..., En are independent. Then, P(Ei ∩ Ej)

= P(Ei) * P(Ej) whenever i 6= j and P(Ei ∩ Ej ∩ Ek) = P(Ei) * P(Ej) * P(Ek) whenever i 6= j 6= k

and ... until P(E1 ∩ E2 ∩ ... En) = P(E1) * P(E2) * ... P(En)

4 Random Variables

Random Variable: Let Ω be a sample space. A (real-valued) random variable is a function of X: Ω

→ R.

State Space: SX ⊆ R is the image of X; That is X(Ω) = SX = all possible outcomes of X. (Trans-

formation of the sample space by X.)

Cumulative Distribution Function: Abbreviated as a CDF, if X is a random variable, then the

cdf of X, denoted, FX , is the function FX : R → [0, 1], where FX(t) = P(X ≤ t).

Properties of CDF: FX(t) denotes the probability the the random variable X takes on a value that

is less than or equal to t. The following properties are true:

• F is a non-decreasing function.

• lim
t→∞

(FX(t)) = 1

• lim
t→−∞

(FX(t)) = 0

4.1 Discrete Random Variables

Discrete Random Variable: A discrete random variable X is one where the state space of X, SX ,

is countable.
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Probability Mass Function: Abbreviated as pmf, the probability mass function of discrete random

variable X is the function pX : SX → [0, 1], with pX(k) = P(X = k).

Note: P(X=k) = FX(k+) - FX(k−)

Note: The cdf of a discrete random variable looks like a step function with jumps at each point in SX

where the gap of the jump at s ∈ SX is pX(s) = P(X = s).

Bernoulli Random Variable: Suppose that one trial or experiment is performed where the result

ends in success or failure. Let X = 1 denote a success and X = 0 denote a failure. Let p ∈ [0, 1] be

the probability of success. Then, the state space SX = {0, 1} and the pmf is pX(0) = 1 - p and pX(1)

= p. Any random variable with this property is called a Bernoulli Random Variable and is denoted

by X = Ber(p)

Binomial Random Variable: Suppose we do n independent trials where each result ends in success

or failure and the probability of success is constant, p ∈ [0, 1]. Let X be the number of successes in

n trials. Then, X is a Binomial Random Variable denoted by X=Bin(n, p) with SX = {0, 1, 2, ..., n}
and

pX(k) =

(
n

k

)
∗ pk ∗ (1− p)n−k

Poisson Random Variable: Given the average rate of of the event, denoted by λ, and the events

are independent of time since the last event, denoted X = Pois(λ)

SX = {0, 1, 2, ...}

pX(k) = e−λ ∗ λ
k

k!

Geometric Random Variable: Used to find the number of independent trials needed before the

first success, denoted X = Geom(p) where the probability of success, p ∈ [0, 1]

SX = 1, 2, ...

pX(k) = (1− p)k−1 ∗ p

Indication Function: An indicator function I for some random variable X will have probability of

P of success, denoted by Ix, is...

I =

{
0 x occurs

1 x{ occurs

where I = Ber(p) and P(X) = p.
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4.2 Expected Value

Expected Value: The expected value of a random variable X with CDF Fx(t) = P (X ≤ t), denoted

by E(X), is

E(X) =

∫ ∞
0

(1− FX(t))dt−
∫ 0

−∞
FX(t)dt =

∫
Ω

X(ω)dP (ω)

Linearity: Expected value is a linear function which is preserves addition and scalar multiplication.

E(an ∗Xn + an−1 ∗Xn−1 + ...a0) = an ∗ E(Xn) + an−1 ∗ E(Xn−1) + ...+ a0

Expected Values of Common Discrete RV:

• E(Bin(n, p)) = n ∗ p

• E(Pois(λ)) = λ

• E(Geom(p)) =
1

p

Discrete EV Theorems:

• If X is a discrete random variable, then

E(X) =
∑
k∈SX

k ∗ pX(k)

• For a function g : R → R and a discrete random variable X, then

E(g(X)) =
∑
k∈SX

g(k) ∗ pX(k)

• For two random variables X and Y in the same sample space,

E(X + Y ) = E(X) + E(Y )

Moment: The nth moment of the discrete random variable X is the expectation E(Xn).

E(Xn) =
∑
k∈SX

kn ∗ pX(k)

Variance: The variance of a random variable X is defined as E((X − µ)2) where µ = E(X), which

conveys how spread out the values of X are from its mean.

V ar(X) = E((X − µ)2) = E(X2)− (E(X))2
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Non-linearity: Variance is a non-linear function. In fact, V ar(a ∗X + b) = a2 ∗ V ar(x).

Variance of a Constant: The variance of any constant is 0.

Variances of Common Discrete RV:

• V ar(Bin(n, p)) = n ∗ p ∗ (1− p)

• V ar(Pois(λ)) = λ

• V ar(Geom(p)) =
1− p
p2

4.3 Approximating Binomial with Poisson

Poisson Limit Theorem: Also known as the Law of Rare Events:, Suppose that lim
n→∞

n ∗ p =

λ < ∞ (p approaches 0 and n approaches infinity in such a way that n * p approaches lambda is

finite). Then, P (Bin(n, p) = k) = P (Pois(λ) = k) as n→∞.

Conditions for Poisson Approximation

• n is large

• n * p << n

4.4 Continuous Random Variables

Continuous Random Variable: X is a continuous random variable when there exists a function

fX : R → R such that FX(t) is continuous.

FX(t) =

∫ t

−∞
fX(s)ds

Probability Density Function: The pdf of a random variable x is denoted by fX(t).

PDF Properties:

• for all t, fX(t) ≥ 0

•
∫∞
−∞ fX(t)dt = 1

• d

dt
FX(t) = fX(t)

• P(X = k) = 0

Uniform Random Variable: A continuous random variable X, denoted X = Unif(a, b) = U(a, b)

is said to be uniformly distributed on [a, b] if X has pdf:

fX(t) =


1

b− a
a ≤ t ≤ b

0 otherwise
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Note: the strictness of end points don’t matter for continuous random variables.

Note: A discrete uniform random variable is Z ∈ [a, b].

Exponential Random Variables: An exponential random variable describes the amount of time

until a specific event occurs. X is an exponential random variable with parameter λ > 0 if it has pdf:

fX(t) =

λ ∗ e−λ∗t t ≥ 0

0 otherwise

Normal Random Variables: X is a normal random variable (X is normally distributed with

parameters µ = E(X) and σ2 = V ar(X)), denoted by X = N(µ, σ2), if the density of X is given by:

fX(t) =
1√

2π ∗ σ2
∗ e
−(t− µ)2

2σ2

Standard Deviation: The standard deviation of a random variable is denoted by σ.

Standard Normal Random Variable: Z is defined as a standard normal random variable when Z

= N(µ = 0, σ = 1)

Note: A change of variables from X to Z can be made such that Z =
X − µ
σ

.

CDF of Standard Normal RV: Fz(a) = Φ(a).

Property of Φ(a): Φ(−a) = 1− Φ(a)

4.5 Expected Value for Continuous Random Variables

Expected Value Formulas: When X is a continuous random variable,

E(X) =

∫ ∞
−∞

t ∗ fX(t)dt

E(g(X)) =

∫ ∞
−∞

g(t) ∗ fX(t)dt

4.6 Poisson Process

Poisson Process: A process which counts the number of events at which these events occur in a

given time interval. When X = Exp(1/λ), E(X) = 1 / λ and X=Pois(λ) where E(X) is the average

number of events in a given time interval.

Memoryless Property: We say a non-negative random variable X is memoryless if

∀s, t ≥ 0[P (X > s+ t | X > t) = P (X > s)]
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Note: Exp(λ) and Geom(p) is memoryless

4.7 Functions of Random Variables

Process: To find the pdf of Y given a continuous random variable X such that Y = g(X), follow the

following 3 steps:

1. Find the cdf of Y in terms of the cdf of X or in terms of t.

2. Take derivative to get the pdf of Y.

3. Find bounds where defined.

Note: this method words for non-continuous random variables, too.

5 Jointly Distributed Random Variables

Jointly Distributed: X and Y are jointly distributed if they are both random variables on the same

sample space Ω. The joint CDF of X and Y is...

FX,Y (s, t) = P (X ≤ s, Y ≤ t)

Marginal Distribution: Given jointly distributed random variables X and Y, the marginal distri-

bution of X is...

FX(s) = P (X ≤ s, Y <∞)

5.1 Jointly Discrete

Jointly Discrete: If random variables X and Y are jointly discrete, then the joint pmf of X and Y

is...

pX,Y (k,m) = P (X = k, Y = m)

Marginal Mass Function: Given jointly discrete random variables X and Y, the marginal mass

function of Y is...

py(m) =
∑
k∈SX

pX,Y (k,m)

Joint CDF: The joint cdf of jointly discrete random variables X and Y is...

Fx,y(k,m) =
∑
a≤k

∑
b≤m

pX,Y (a, b)
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Joint Expectation: The joint expectation of jointly discrete random variables X and Y is...

E(g(x, y)) =
∑
k∈SX

∑
m∈SY

g(k,m) ∗ pX,Y (k,m)

5.2 Jointly Continuous

Jointly Continuous: If X and Y are random variables on a common sample space Ω, X and Y are

jointly continuous when there is a function f : R2 → R+
0 such that...

P ((x, y) ∈ D) =

∫ ∫
D

fX,Y (x, y)dA

Joint Density: If X and Y are jointly continuous random variables, then the joint density is...

fX,Y (x, y) =
δ

δxδy
FX,Y (x, y)

Joint CDF: The joint cdf of jointly continuous random variables X and Y is...

FX,Y (a, b) =

∫ b

−∞

∫ a

−∞
fX,Y (x, y)dxdy

Marginal Density: The marginal density of X for jointly continuous random variables X and Y is...

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy

5.3 Independent Random Variables

Independent: Random variables X and Y are independent when

P (X ∈ A, Y ∈ B) = P (X ∈ A) ∗ P (Y ∈ B)

Independence Theorem: If X and Y are jointly distributed random variables, then the following

statements are equivalent:

• X and Y are independent

• FX,Y (a, b) = fX(a) ∗ fY (b)

• If X and Y are discrete, then pX,Y (a, b) = pX(a) ∗ pY (b)

• If X and Y are continuous, then fX,Y (a, b) = fX(a) ∗ fY (b)
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5.4 Conditional Distributions

Notation: The following denotes the conditional mass and conditional distribution functions of X

given Y = m respectively for the discrete case:

pX|Y (k | m) = P (X = k | Y = m)

FX|Y (k | m) = P (X ≤ k | Y = m)

For the continuous case,

fX|Y (x | y) =
fX,Y (x, y)

fY (y)

FX|Y (a | y) =

∫ a

−∞
fX|Y (x | y)dx

Independence: If joint random variables X and Y are independent, then the conditional mass and

density functions are:

pX|Y (k | m) = pX(m)

fX|Y (x | y) = fX(x)

5.5 Conditional Expectation

Conditional Expectation: Suppose Y is a discrete random variable. Then the expectation of Y

given event A is:

E(Y | A) =
∑
m∈SY

m ∗ P (Y = m | A)

Given Random Variable X = x instead of event A, the conditional expectation of Y is (for the jointly

discrete case)...

E(Y | X = x) =
∑
m∈SY

m ∗ P (Y = m | X = x)

For the jointly continuous case...

E(Y | X = x) =

∫ ∞
−∞

fY |X(y | x)dy

Properties of Conditional Expectation:

• Linearity persists: E(X + Y | A) = E(X | A) + E(Y | A)

• Total Law of Expectation: E(Y ) =
∑n

i=1 P (Ai) ∗ E(Y | Ai) for partition of {Ai}.
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5.6 Sums of Independent Random Variables

Convolution: For independent random variables X and Y, the joint pmf or density is found by

breaking {X + Y = n} into a disjoint union of sets. For the discrete case,

pX+Y (n) =
∑
k∈SX

pX(k) ∗ pY (n− k)

Special Cases:

• Pois(λ1) + Pois(λ2) = Pois(λ1 + λ2)

• Bin(n, p) +Bin(m, p) = Bin(n+m, p)

• N(µ1, σ
2
1) +N(µ2, σ

2
2) = N(µ1 + µ2, σ

2
1 + σ2

2)

Independent and Identically Distributed: Random variables X and Y are independent and

identically distributed (iid) if they are independent and share the same probability distribution.

Negative Binomial Distribution: A random variable X has a negative binomial distribution,

denoted X = NegBin(k, p), with parameters k and p where k is nonnegative, if Sx = {k, k + 1, ...}
with pmf for n ≥ k (where n denotes number of trials until the kth success):

P (X = n) =

(
n− 1

k − 1

)
∗ pk ∗ (1− p)n−k

5.7 Covariance

Covariance: The covariance of jointly distributed random variables X and Y, denoted Cov(X, Y),

is...

Cov(X, Y ) = E[(X − µX)(Y − µY )] = E(XY )− E(X) ∗ E(Y )

Properties of Covariance:

• Cov(X, Y) = Cov(Y, X)

• Cov(X, X) = Var(X)

• Cov(a*X + b, Y) = a*Cov(X, Y)

• Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)

• If X and Y are independent, then Cov(X, Y) = 0

Note: Cov(X, Y) = 0 doesn’t imply X and Y are independent.

Variance Theorem: Let X and Y be random variables. Then,

V ar(X) + V ar(Y ) + 2 ∗ Cov(X, Y ) = V ar(X + Y )
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Note: When X and Y are independent, Cov(X, Y) = 0 so Var(X) + Var(Y) = Var(X + Y)

General Case: For n random variables,

V ar(X1 +X2 + ...Xn) =
n∑
i=1

V ar(Xi) +
∑
i 6=j

Cov(xi, xj)

Correlation: Suppose that X and Y are jointly distributed random variables with nonzero variances.

Then, the correlation of X and Y, denoted Corr(X, Y), is:

Corr(X, Y ) = r =
Cov(X, Y )√

V ar(X) ∗
√
V ar(Y )

Note: If Corr(X, Y) = 0, we say X and Y are uncorrelated.

Note: If X and Y are independent, then Corr(X, Y) = 0.

Note: Corr(X, Y) = 0 doesn’t imply X and Y are independent.

5.8 Moment Generating Functions

Moment Generating Function: The moment generating function (MGF) of a random variable X

with real parameter t (where t is the t-th moment) is defined by...

MX(t) = E(et∗X)

MGF Theorem: Let X and Y be 2 random variables with MGFs MX(t) and MY (t). If MX(t) =

MY (t), then X and Y have the same distribution. (Random variables have unique MGFs)
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