NEURAL NETWORKS CRASH COURSE

ALEX MEI | FALL 2020 | RESEARCH METHODS IN CS

- High-Level Introduction
- Mathematical Logic
- Review Questions

OVERVIEW

NEURAL NETWORKS... WHAT ARE THEY!?

- Neuron: stores a value known as the activation within the unit interval
- Neural Network: complex connection of networks
 - First and Last layers corresponds to some factor about input and output
 - Example: brightness of pixel in image and resulting number
 - Middle Layers: black box with unknown connections to and from other layers
 - Goal: have each layer separating inputs by some determining characteristics

CONNECTIONS, CONNECTIONS, CONNECTIONS

- Weighted average of connections from previous layer's neurons
- Sigmoid Function: transform weighted average to be within unit interval
- Bias: constant added to the weighted average (for each neuron)
- Goal: find weights and bias to allow the network to be successful

WEIGHING OUT YOUR OPTIONS

Initialization: random weights, random biases

- Cost (error): square of differences in performance of weights/biases
- Goal: find weights and bias to minimize cost function
- Gradient: direction of steepest increase
 - Idea: take step toward (local) minimum and repeat until reached
 - May need to experiment to see which local minimum is smaller

PUT IT IN REVERSE

• Given the gradient, adjust based on error function

- Three options: bias, weights, and activations (focus on stronger connections)
- For activations, recursively apply to previous layers
- Sum each neuron of last layer to backwards propagate to previous layer

TRAIN, TRAIN, TRAIN

- First Iteration: bad performance
- Adjust based on results of cost function
- Rerunning test data should result in better performance
- Repeat process until performance plateaus
- Beware! Overfitting = model works for only one set of test data

REVIEW I

Neural Networks have many layers. What do each of the following layers symbolize? • First Layer • Middle Layer(s)

• Last Layer

REVIEW II

 How do we minimize the cost function? Why is this important?

 What adjustments can we make to our neural network to make this minimization?

NEURONS, ACTIVATE!

Sigmoid

$$a_{0}^{(1)} = \overset{\downarrow}{\sigma} \left(w_{0,0} \ a_{0}^{(0)} + w_{0,1} \ a_{1}^{(0)} + \dots + w_{0,n} \ a_{n}^{(0)} + b_{0} \right)$$
Bias

$$\boldsymbol{\sigma} \left(\begin{array}{ccccccccc} w_{0,0} & w_{0,1} & \dots & w_{0,n} \\ w_{1,0} & w_{1,1} & \dots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \dots & w_{k,n} \end{array} \right) \left(\begin{array}{c} a_0^{(0)} \\ a_1^{(0)} \\ \vdots \\ a_n^{(0)} \end{array} \right) + \left(\begin{array}{c} b_0 \\ b_1 \\ \vdots \\ b_n \end{array} \right) \right)$$

AND THE COST IS...

$$\operatorname{Cost} \longrightarrow C_0(\dots) = (a^{(L)} - y)^2$$

$$z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$
$$a^{(L)} = \sigma(z^{(L)})$$

$$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C0}{\partial a^{(L)}}$$

$$\frac{\partial C0}{\partial a^{(L)}} = 2(a^{(L)} - y)$$
$$\frac{\partial a^{(L)}}{\partial z^{(L)}} = \sigma'(z^{(L)})$$
$$\frac{\partial z^{(L)}}{\partial w^{(L)}} = a^{(L-1)}$$

TIME TO BARGAIN!

$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C0}{\partial a^{(L)}} = a^{(L-1)} \sigma'(z^{(L)}) 2(a^{(L)} - y)$			$\frac{\partial C}{\partial c}$
$\frac{\partial C_0}{\partial b^{(L)}} = \frac{\partial z^{(L)}}{\partial b^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C0}{\partial a^{(L)}} =$	$\int \sigma'(z^{(L)})2(a^{(L)}-y)$		$\frac{\partial w^{(1)}}{\partial C}$
$\frac{\partial C_0}{\partial a^{(L-1)}} = \frac{\partial z^{(L)}}{\partial a^{(L-1)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C0}{\partial a^{(L)}} =$	$w^{(L)}\sigma'(z^{(L)})2(a^{(L)}-y)$	$\nabla C =$	$rac{\partial b^{(1)}}{\partial b^{(1)}}$
$C(w_1, b_1, w_2, b_2, w_3, b_3)$	Average of all training examples		$\frac{\partial C}{\partial \omega(L)}$
	$\frac{\partial C}{\partial w^{(L)}} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\partial C_k}{\partial w^{(L)}}$ Derivative of full cost function		$\frac{\partial C}{\partial b^{(L)}}$

PRACTICE I

Suppose there is a 2-layer neural network with 2 neurons per layer with the following weight matrix (and no bias):

$$weights = \begin{bmatrix} 0.2 & 0.4\\ 0.6 & 0.8 \end{bmatrix}$$

Calculate the output with the given input:

$$input = \begin{bmatrix} 0.7\\ 0.3 \end{bmatrix}$$

PRACTICE II

Calculate the cost given this expected output:

$$output = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

Then, calculate the gradient descent.

• 3Blue 1 Brown (Information)

• Wikipedia, DataBricks (Images)

